skip to main content
10.1145/2840728.2840753acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article
Public Access

On Sketching Quadratic Forms

Authors Info & Claims
Published:14 January 2016Publication History

ABSTRACT

We undertake a systematic study of sketching a quadratic form: given an n x n matrix A, create a succinct sketch sk(A) which can produce (without further access to A) a multiplicative (1+ε)-approximation to xT A x for any desired query xRn. While a general matrix does not admit non-trivial sketches, positive semi-definite (PSD) matrices admit sketches of size θ(ε{-2 n), via the Johnson-Lindenstrauss lemma, achieving the "for each" guarantee, namely, for each query x, with a constant probability the sketch succeeds. (For the stronger "for all" guarantee, where the sketch succeeds for all x's simultaneously, again there are no non-trivial sketches.)

We design significantly better sketches for the important subclass of graph Laplacian matrices, which we also extend to symmetric diagonally dominant matrices. A sequence of work culminating in that of Batson, Spielman, and Srivastava (SIAM Review, 2014), shows that by choosing and reweighting O{-2 n) edges in a graph, one achieves the "for all" guarantee. Our main results advance this front.

  • For the "for all" guarantee, we prove that Batson et al.'s bound is optimal even when we restrict to "cut queries" x ∈ (0,1}n. Specifically, an arbitrary sketch that can (1+ε)-estimate the weight of all cuts (S, bar S) in an n-vertex graph must be of size Ω(ε{-2 n) bits. Furthermore, if the sketch is a cut-sparsifier (i.e., itself a weighted graph and the estimate is the weight of the corresponding cut in this graph), then the sketch must have Ω(ε{-2 n) edges.

  • In contrast, previous lower bounds showed the bound only for spectral-sparsifiers.

  • For the "for each" guarantee, we design a sketch of size Õ(ε{-1 n) bits for "cut queries" x ∈{0,1}n. We apply this sketch to design an algorithm for the distributed minimum cut problem. We prove a nearly-matching lower bound of Ω(ε{-1 n) bits. For general queries xRn, we construct sketches of size Õ(ε{-1.6 n) bits.

Our results provide the first separation between the sketch size needed for the "for all" and "for each" guarantees for Laplacian matrices.

References

  1. K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 459--467, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. J. Ahn, S. Guha, and A. McGregor. Graph sketches: sparsification, spanners, and subgraphs. In 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 5--14, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS '05, pages 339--348. IEEE Computer Society, 2005.href http://dx.doi.org/10.1109/SFCS.2005.35pathdoi:10.1109/SFCS.2005.35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon. On the edge-expansion of graphs. Comb. Probab. Comput., 6(2):145--152, June 1997.href http://dx.doi.org/10.1017/S096354839700299Xpathdoi:10.1017/S096354839700299X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56(2):1--37, 2009.href http://dx.doi.org/10.1145/1502793.1502794pathdoi:10.1145/1502793.1502794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data analysis of social networks via restricted sensitivity. In Innovations in Theoretical Computer Science, ITCS 2013, pages 87--96, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. A. Benczúr and D. R. Karger. Approximating $\rm s$-$\rm t$ minimum cuts in Õ(n2) time. In 28th Annual ACM Symposium on Theory of Computing, pages 47--55. ACM, 1996.href http://dx.doi.org/10.1145/237814.237827pathdoi:10.1145/237814.237827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. SIAM Review, 56(2):315--334, 2014.href http://dx.doi.org/10.1137/130949117pathdoi:10.1137/130949117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages 205--214, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi. A general framework for graph sparsification. In Proceedings of the Symposium on Theory of Computing (STOC), pages 71--80. ACM, 2011.href http://dx.doi.org/10.1145/1993636.1993647pathdoi:10.1145/1993636.1993647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Gupta, A. Roth, and J. Ullman. Iterative constructions and private data release. In 9th International Conference on Theory of Cryptography, TCC'12, pages 339--356. Springer-Verlag, 2012.href http://dx.doi.org/10.1007/978-3-642-28914-9_19pathdoi:10.1007/978--3--642--28914--9_19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. R. Henzinger and D. P. Williamson. On the number of small cuts in a graph. Inf. Process. Lett., 59(1):41--44, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Jain and A. Thakurta. Mirror descent based database privacy. In 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, pages 579--590, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46--76, 2000.href http://dx.doi.org/10.1145/331605.331608pathdoi:10.1145/331605.331608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. Single pass spectral sparsification in dynamic streams. In 55th Annual Symposium on Foundations of Computer Science, FOCS '14, pages 561--570. IEEE Computer Society, 2014.href http://arxiv.org/abs/1407.1289patharXiv:1407.1289,href http://dx.doi.org/10.1109/FOCS.2014.66pathdoi:10.1109/FOCS.2014.66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. Distributed computation of large-scale graph problems. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '15, pages 391--410. SIAM, 2015.href http://arxiv.org/abs/1311.6209patharXiv:1311.6209,href http://dx.doi.org/10.1137/1.9781611973730.28pathdoi:10.1137/1.9781611973730.28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Kapralov and R. Panigrahy. Spectral sparsification via random spanners. In 3rd Innovations in Theoretical Computer Science Conference, pages 393--398. ACM, 2012.href http://dx.doi.org/10.1145/2090236.2090267pathdoi:10.1145/2090236.2090267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 245--254. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9--20, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Nilli. On the second eigenvalue of a graph. Discrete Math, 91:207--210, 1991.href http://dx.doi.org/10.1016/0012-365X(91)90112-Fpathdoi:10.1016/0012-365X(91)90112-F. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Sherman. Breaking the multicommodity flow barrier for O(√log n)-approximations to sparsest cut. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 363--372, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM J. Comput., 40(6):1913--1926, December 2011.href http://dx.doi.org/10.1137/080734029pathdoi:10.1137/080734029. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the Symposium on Theory of Computing (STOC), pages 81--90. ACM, 2004.href http://dx.doi.org/10.1145/1007352.1007372pathdoi:10.1145/1007352.1007372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981--1025, 2011.href http://dx.doi.org/10.1137/08074489Xpathdoi:10.1137/08074489X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Upadhyay. Random projections, graph sparsification, and differential privacy. In 19th International Conference on Advances in Cryptology, ASIACRYPT 2013, pages 276--295. Springer-Verlag, 2013.href http://dx.doi.org/10.1007/978-3-642-42033-7_15pathdoi:10.1007/978-3-642-42033-7_15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Upadhyay. Circulant matrices and differential privacy. CoRR, abs/1410.2470, 2014.href http://arxiv.org/abs/1410.2470patharXiv:1410.2470.Google ScholarGoogle Scholar
  27. D. P. Woodruff and Q. Zhang. When distributed computation is communication expensive. In Distributed Computing - 27th International Symposium, DISC 2013, pages 16--30, 2013.href http://dx.doi.org/10.1007/978-3-642-41527-2_2pathdoi:10.1007/978-3-642-41527-2_2.Google ScholarGoogle Scholar

Index Terms

  1. On Sketching Quadratic Forms

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ITCS '16: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science
      January 2016
      422 pages
      ISBN:9781450340571
      DOI:10.1145/2840728

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 January 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ITCS '16 Paper Acceptance Rate40of145submissions,28%Overall Acceptance Rate172of513submissions,34%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader