skip to main content
review-article

Community Detection in Multi-Layer Graphs: A Survey

Authors Info & Claims
Published:03 December 2015Publication History
Skip Abstract Section

Abstract

Community detection, also known as graph clustering, has been extensively studied in the literature. The goal of community detection is to partition vertices in a complex graph into densely-connected components socalled communities. In recent applications, however, an entity is associated with multiple aspects of relationships, which brings new challenges in community detection. The multiple aspects of interactions can be modeled as a multi-layer graph comprised of multiple interdependent graphs, where each graph represents an aspect of the interactions. Great efforts have therefore been made to tackle the problem of community detection in multi-layer graphs. In this survey, we provide readers with a comprehensive understanding of community detection in multi-layer graphs and compare the state-of-the-art algorithms with respect to their underlying properties.

References

  1. B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. Mining coherent subgraphs in multi-layer graphs with edge labels. In Proc. 2012 ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, pages 1258--1266, Beijing, China, Aug. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 464(7291):1025--1028, Apr. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, and S. Boccaletti. Emergence of network features from multiplexity. Scientific Reports, 3(1344), Feb. 2013.Google ScholarGoogle Scholar
  4. F. Celli, F. M. L. D. Lascio, M. Magnani, B. Pacelli, and L. Rossi. Social network data and practices: The case of friendfeed. In Proc. 3rd Int'l Conf. on Social Computing, Behavioral Modeling, and Prediction, pages 346--353, Bethesda, Maryland, Mar. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. D. Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy of a scientific rumor. Scientific Reports, 3(2980), Oct. 2013. perspective. IEEE Trans. on Signal Processing, 60(11):5820--5831, Dec. 2011.Google ScholarGoogle Scholar
  6. S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75--174, Feb. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards rich mobile phone datasets: Lausanne data collection campaign. In Proc. The 7th Int'l Conf. on Pervasive Services, Berlin, Germany, July 2010.Google ScholarGoogle Scholar
  8. H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. on Knowledge Discovery from Data, 3(1):1--58, Mar. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Lee, M. Ko, K. Han, and J.-G. Lee. On finding fine-granularity user communities by profile decomposition. In Proc. 2012 ASONAM Int'l Conf. on Advances in Social Networks Analysis and Mining, pages 631--639, Istanbul, Turkey, Aug. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical comparison of algorithms for network community detection. In Proc. 19th Int'l World Wide Web Conf., pages 631--640, Raleigh, North Carolina, Apr. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Li, Z. Nie, W.-C. Lee, L. Giles, and J.-R. Wen. Scalable community discovery on textual data with relations. In Proc. 17th Int'l Conf. on Information and Knowledge Management, pages 1203--1212, Napa Valley, California, Oct. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee. LinkSCAN*: Overlapping community detection using the link-space transformation. In Proc. 30th Int'l Conf. on Data Engineering, pages 292--303, Chicago, Illinois, Apr. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Magnani and L. Rossi. The ML-model for multi-layer social networks. In Proc. 2011 ASONAM Int'l Conf. on Advances in Social Networks Analysis and Mining, pages 5--12, Kaohsiung City, Taiwan, July 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Moon, J.-G. Lee, and M. Kang. Scalable community detection from networks by computing edge betweenness on mapreduce. In Proc. 2014 Int'l Conf. on Big Data and Smart Computing, pages 145--148, Bangkok, Thailand, Jan. 2014.Google ScholarGoogle Scholar
  15. J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In Proc. 2005 ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, pages 228--238, Chicago, Illinois, Aug. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G.-J. Qi, C. C. Aggarwal, and T. Huang. Community detection with edge content in social media networks. In Proc. 28th Int'l Conf. on Data Engineering, pages 534--545, Brisbane, Australia, Apr. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient community detection in large networks using content and links. In Proc. 22nd Int'l World Wide Web Conf., pages 1089--1098, Rio de Janeiro, Brazil, May 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27--64, Aug. 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Silva, W. M. Jr., and M. J. Zaki. Structural correlation pattern mining for large graphs. In Proc. 8th Workshop on Mining and Learning with Graphs, pages 119--126, Washington D.C., Aug. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Silva, W. M. Jr., and M. J. Zaki. Mining attribute-structure correlated patterns in large attributed graphs. Proc. of the VLDB Endowment, 5(5):466--477, Sept. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A survey on enhanced subspace clustering. Data Mining and Knowledge Discovery, 26(2):332--397, Feb. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Sun and J. Han. Mining heterogeneous information networks: a structural analysis approach. ACM SIGKDD Explorations Newsletter, 14(2):20--28, Dec. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. Proc. of the VLDB Endowment, 4(11):992--1003, Aug. 2011.Google ScholarGoogle Scholar
  24. W. Tang, Z. Lu, and I. S. Dhillon. Clustering with multiple graphs. In Proc. 9th Int'l Conf. on Data Mining, pages 1016--1021, Mianmi, Florida, Dec. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In Proc. 2012 ACM SIGMOD Int'l Conf. on Management of Data, pages 505--516, Indianapolis, Indiana, June 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large dense graph databases. In Proc. 2006 ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, pages 797--802, Philadelphia, Pennsylvania, Aug. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. Proc. of the VLDB Endowment, 2(1):718--729, Aug. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Community Detection in Multi-Layer Graphs: A Survey
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader