skip to main content
research-article
Public Access

Research Challenges in Parallel and Distributed Simulation

Published:02 May 2016Publication History
Skip Abstract Section

Abstract

The parallel and distributed simulation field has evolved and grown from its origins in the 1970s and 1980s and remains an active field of research to this day. A brief overview of research in the field is presented. Future research topics are explored including areas such as problem-driven simulation of large-scale systems and complex networks, exploitation of graphical processing unit hardware and cloud computing environments, predictive online simulation for system management and optimization, power and energy consumption in mobile platforms and data centers, and composition of heterogeneous simulations.

References

  1. N. Adam, R. Stiles, A. Zimdars, R. Timmons, J. Leung, G. Stachnick, J. Merrick, R. Coop, V. Slavin, T. Kruglikov, J. Galmiche, and S. Mehrotra. 2013. Consequence analysis of complex events on critical U.S. Infrastructure. Communications of the ACM, 56, 6, 83--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. G. Allen. 2007. Building a dynamic data driven application system for hurricane forecasting. In Computational Science (ICCS’07). Y. Shi, G. D. V. Albada, J. Dongarra, and P. M. A. Sloot (Eds.). Springer, Berlin, 1034--1041. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low. 2009. Research issues in symbiotic simulation. Winter Simulation Conference, 1213--1222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. L. Barabasi and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 5439, 509--512.Google ScholarGoogle Scholar
  5. P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. Warp speed: Executing time warp on 1,966,080 cores. Principles of Advanced Discrete Simulation, 327--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. Bhatti, C. Belleudy, and M. Auguin. 2010. Power management in real time embedded systems through online and adaptive interplay of DPM and DVFS policies. International Conference on Embedded and Ubiquitous Computing, 184--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. R. Bisset, J. Chen, X. Feng, V. S. A. Kumar, and M. V. Marathe. 2009. Epifast: A fast algorithm for large scale realistic epidemic sim- ulations on distributed memory systems. International Conference of Supercomputing, 430--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Boukerche and R. E. De Grande. 2009. Dynamic load balancing using grid services for hla-based simulations on large-scale distributed systems. International Symposium on Distributed Simulation and Real Time Applications, 175--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Brun, T. Artés, T. Margalef, and A. Cortés. 2012. Coupling wind dynamics into a DDDAS forest fire propagation prediction system. In Proceedings of the International Conference on Compuational Science.Google ScholarGoogle Scholar
  10. R. E. Bryant. 1977. Simulation of packet communications architecture computer systems. MIT-LCS-TR-188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. D. Carothers and R. M. Fujimoto. 2000. Efficient execution of time warp programs on heterogeneous, now platforms. IEEE Transactions on Parallel and Distributed Systems 11, 3, 299--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Cetinkaya and A. Verbraeck. 2011. Metamodeling and model transformations in modeling and simulation. Winter Simulation Conference, 3048--3058. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. M. Chandy and J. Misra. 1978. Distributed simulation: A case study in design and verification of distributed programs. IEEE Transactions on Software Engineering SE-5, 5, 440--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Chaturvedi, A. Mellema, S. Filatyev, and J. Gore. 2006. DDDAS for fire and agent evacuation modeling of the rhode island nightclub fire. In Computational Science (ICCS’06). V. N. Alexandrov, G. D. V. Albada, P. M. A. Sloot, and J. Dongarra (Eds.). Springer, Berlin, 433--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K.-M. Cho, C.-H. Liang, J.-Y. Huang, and C.-S. Yang. 2011. Design and implementation of a general purpose power-saving scheduling algorithm for embedded systems. IEEE International Conference on Signal Processing, Communications and Computing, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Chung and Y. Chung. 1991. An experimental analysis of simulation clock advancement in parallel logic simulation on an simd machine. Advances in Parallel and Distributed Simulation, SCS Simulation Series. 23, 125--132.Google ScholarGoogle Scholar
  17. R. Cohen and S. Havlin. 2003. Scale-free networks are ultrasmall. Physics Review Letters 90, 5, 058701.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Cortial, C. Farhat, L. J. Guibas, and M. Rajashekhar. 2007. Compressed sensing and time-parallel reduced-order modeling for structural health monitoring using a DDDAS. In Computational Science (ICCS’07). Y. Shi, G. D. V. Albada, J. Dongarra, and P. M. A. Sloot (Eds.). Springer, Berlin, 1171--1179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. de Supinski, and M. Schulz. 2008. Prediction models for multi-dimensional power-performance optimization on many cores. Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques. ACM, New York, NY, 250--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Czechowski and R. Vuduc. 2013. A theoretical framework for algorithm-architecture co-design. 2013 IEEE 27th International Symposium on Parallel Distributed Processing (IPDPS’13), 791--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. W. Bauer Jr., C. D. Carothers, and A. Holder. 2009. Scalable time warp on blue gene supercomputers. Principles of Advanced and Distributed Simulation, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. D’Angelo. 2011. Parallel and distributed simulation from many cores to the public cloud. International Conference on High Performance Computing and Simulation, 14--23.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. D’Angelo and S. Ferretti. 2009. Simulation of scale-free networks. In Proceedings of the 2nd Internatinoal Conference on Simulation Tools and Techniques. ICST, Rome, Italy. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Darema. 2004. Dynamic data driven applications systems: A new paradigm for application simulations and measurements. International Conference on Computational Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. De Lara and H. Vangheluwe. 2002. AToM3: A tool for multi-formalism and meta-modelling. In Proceedings of the Fundamental Approaches to Software Engineering. R.-D. Kutsche and H. Weber (Eds.). Springer. 2306, 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Dobrescu, S. Taralunga, and S. Mocanu. 2008. Parallel internet traffic simulator with self-similar scale-free network models. WSEAS Transactions on Advances in Engineering Education 5, 2, 61--68.Google ScholarGoogle Scholar
  27. J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver. 2012. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architecture. In The 2nd International Conference on Cloud and Green Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. C. Douglas, R. A. Lodder, J. D. Beezley, J. Mandel, R. E. Ewing, Y. Efendiev, G. Qin, M. Iskandara-ni, J. Coen, A. Vodacek, M. Kritz, and G. Haase. 2006. DDDAS approaches to wildland fire modeling and contaminant tracking. In Proceedings of the 2006 Winter Simulation Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Erazo, R. Rong, and J. Liu. 2015 Symbiotic network simulation and emulation. ACM Transactions on Modeling and Computer Simulation 26, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Ekanayake and G. Fox. 2009. High performance parallel computing with clouds and cloud technologies. Department of Computer Science, Indiana University.Google ScholarGoogle Scholar
  31. H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley. 2012. Looking back and looking forward: Power, performance, and upheaval. Communications of the ACM 55, 7, 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Falk, M. Ott, T. Ertl, M. Klann, and H. Koeppl. 2011. Parallelized agent-based simulation on CPU and graphics hardware for spatial and stochastic models in biology. In 9th International Conference on Computational Methods in Systems Biology, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Faloutsos, P. Faloutsos, and C. Faloutsos. 1999. On power-law relationships of the internet topology. SIGCOMM Computer Communications Review 29, 4, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Feng, Y. Di, Yuanchang, and Z. X. Meng. 2010. Remodeling traditional RTI software to be with paas architecture. In International Conference on Computer Science and Information Technology, 511--515.Google ScholarGoogle Scholar
  35. X. Feng, R. Ge, and K. W. Cameron. 2005. Power and energy profiling of scientific applications on distributed systems. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05), 34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. M. Fujimoto, M. Hunter, J. Sirichoke, M. Palekar, H.-K. Kim, and W. Suh. 2007. Ad hoc distributed simulations. Principles of Advanced and Distributed Simulation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. M. Fujimoto. 1990. Performance of time warp under synthetic workloads. In Proceedings of the SCS Multiconference on Distributed Simulation.Google ScholarGoogle Scholar
  38. R. M. Fujimoto. 1993. Parallel discrete event simulation: Will the field survive? ORSA Journal on Computing 5, 3, 213--230.Google ScholarGoogle ScholarCross RefCross Ref
  39. R. M. Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. M. Fujimoto. 2015. Parallel and distributed simulation. In Winter Simulation Conference, 45--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. R. M. Fujimoto and A. Biswas. 2015. An empirical study of energy consumption in distributed simulations. In International Symposium on Distributed Simulation and Real-Time Applications.Google ScholarGoogle Scholar
  42. R. M. Fujimoto, D. Lunceford, E. Page, and A. Uhrmacher (Eds.). 2002. Grand Challenges in Modeling and Simulation. Technical Report 350, Schloss Dagstuhl, Seminar No. 02351.Google ScholarGoogle Scholar
  43. R. M. Fujimoto, A. W. Malik, and A. J. Park. 2010. Parallel and distributed simulation in the cloud. SCS Modeling and Simulation Magazine, International Society for Modeling and Simulation, 1, 3.Google ScholarGoogle Scholar
  44. R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F. Riley. 2003. Large-scale network simulation: How big? how fast? In Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.Google ScholarGoogle Scholar
  45. K. Fürlinger, C. Klausecker, and D. Kranzlmüller. 2011. Towards energy efficient parallel computing on consumer electronic devices. In Proceedings of the 1st International Conference on Information and Communication on Technology for the Fight Against Global Warming. Springer-Verlag, Berlin, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. 2014. Energy efficient HPC on embedded socs: Optimization techniques for mali GPU. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 123--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. H. Guclu, G. Korniss, Z. Toroczkai, and M. A. Novotny. 2004. Small-world synchronized computing networks for scalable parallel discrete-event simulations. In Complex Networks, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (Eds.). Springer-Verlag, Berlin. 650, 255--275.Google ScholarGoogle Scholar
  48. K. A. Hawick, A. Leist, and D. P. Playne. 2011. Regular lattice and small- world spin model simulations using CUDA and GPUs. International Journal of Parallel Programming 39, 2, 183--201.Google ScholarGoogle ScholarCross RefCross Ref
  49. H. He, R. Li, X. Dong, Z. Zhang, and H. Han. 2012. An efficient and secure cloud-based distributed simulation system. Journal of Applied Mathematics & Information Sciences 6, 3, 729--736.Google ScholarGoogle Scholar
  50. M. D. Hill and M. R. Marty. 2008. Amdahl's law in the multicore era. Computer 41, 7, 33--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. T. Hruz, S. Geisseler, and M. Schöngens. 2010. Parallelism in simulation and modeling of scale-free complex networks. Parallel Computing 36, 8, 469--485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. S. Hua and G. Qu. 2003. Approaching the maximum energy saving on embedded systems with multiple voltages. In IEEE/ACM International Conference on Computer-Aided Design, 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y.-L. Huang, M. Hunter, C. Alexopoulos, and R. M. Fujimoto. 2010. Ad hoc distributed simulation of queueing networks. Principles of Advanced and Distributed Simulation.Google ScholarGoogle Scholar
  54. IEEE Std. 1278.1-1995. 1995. IEEE Standard for Distributed Interactive Simulation -- Application Protocols. Institute of Electrical and Electronics Engineers, New York, NY.Google ScholarGoogle Scholar
  55. IEEE Std. 1278.2-1995. 1995. IEEE Standard for Distributed Interactive Simulation -- Communication Services and Profiles. Institute of Electrical and Electronics Engineers, New York, NY.Google ScholarGoogle Scholar
  56. IEEE Std. 1516-2010. 2010. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Framework and Rules. Institute of Electrical and Electronics Engineers, New York, NY.Google ScholarGoogle Scholar
  57. IEEE Std. 1516.1-2010. 2010. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Interface Specification. Institute of Electrical and Electronics Engineers, New York, NY.Google ScholarGoogle Scholar
  58. IEEE Std. 1516.2-2010. 2010. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Object Model Template (OMT) Specification. Institute of Electrical and Electronics Engineers, New York, NY.Google ScholarGoogle Scholar
  59. V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. 2010. Web search using mobile cores: Quantifying and mitigating the price of efficiency. SIGARCH Computer Architecture News 38, 3, 314--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. D. Jefferson. 1985. Virtual time. ACM Transactions on Programming Languages and Systems 7, 3, 404--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. H. Jia-Wei and H. T. Kung. 1981. I/O complexity: The red-blue pebble game. In Proceedings of the 13th Annual ACM symposium on Theory of Computing (STOC’81). ACM Press, New York, NY, 326--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. D. Jin and D. Nicol. 2015. Parallel simulation and virtual-machine-based emulation of software-defined networks. ACM Transactions on Modeling and Computer Simulation 26, 1, Article 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. W. Jones. 1986. An empirical comparison of priority-queue and event-set implementations. Communications of the ACM 29, 4, 300--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. I.-Y. Jung, B.-J. Han, and C.-S. Jeong. 2014. Provisioning on-demand HLA/RTI simulation environment on cloud for distributed-parallel computer simulations. Mobile, Ubiquitous, and Intelligent Computing, 329--334.Google ScholarGoogle Scholar
  65. F. Kamrani and R. Ayani. 2007. Using on-line simulation for adaptive path planning of UAVs. In Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. H. Kitano. 2002. Systems biology: A brief overview. Science 295, 5560, 1662--1664.Google ScholarGoogle Scholar
  67. G. Kunz, D. Schemmel, J. Gross, and K. Wehrle. 2012. Multi-level parallelism for time and cost efficient parallel discrete event simulation on GPUs. Principles of Advanced and Distributed Simulation, 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. G. Kunz, M. Stoffers, O. Landsiedel, K. Wehrle, and J. Gross. 2016. Parallel expanded event simulation of tightly coupled systems. ACM Transaction on Modeling and Computer Simulation 26, 2, Article 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. P. Lendermann, M. Y. H. Low, B. P. Gan, N. Julka, L.-P. Chan, L. H. Lee, S. J. E. Taylor, S. J. Turner, W. Cai, X. Wang, T. Hung, L. F. McGinnis, and S. Buckley. 2005. An integrated and adaptive decision-support framework for high-tech manufacturing and service networks. In Proceedings of the 2005 Winter Simulation Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. B.-H. Li, X. Chai, B. Hou, C. Yang, T. Li, T. Lin, Z. Zhang, Y. Zhang, W. Zhu, and Z. Zhao. 2013. Research and application on cloud simulation. Summer Computer Simulation Conference, 157--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. L. Li, D. Alderson, J. Doyle, and W. Willinger. 2004. A first-principles approach to understanding the internet's router-level topology. ACM Computer Communication Review 34, 3--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. X. Li, W. Cai, and S. Turner. 2013. GPU acceleratedthree-stage execution model for event-parallel simulation. Principles of Advanced Discrete Simulation, 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. J. Liu, Y. Liu, Z. Du, and T. Li. 2014. GPU-assisted hybrid network traffic model. Principles of Advanced Discrete Simulation, 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. J. Liu and R. Rong. 2012. Hierarchical composite synchronization. Principles of Advanced and Distributed Simulation, 3--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. X. Liu and A. A. Chien. 2004. Realistic large-scale online network simulation. In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. X. Liu, X. Qiu, B. Chen, and K. Huang. 2012. Cloud-based simulation: The state-of-the-art computer simulation paradigm. Principles of Advanced and Distributed Simulation, 71--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. C. Lively, V. Taylor, X. Wu, H.-C. Chang, C.-Y. Su, K. Cameron, S. Moore, and D. Terpstra. 2014. E-AMOM: An energy-aware modeling and optimization methodology for scientific applications. Computer Science - Research and Development 29, 3--4, 197--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. M. Y. H. Low, K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and S. H. Leo. 2005. An agent-based approach for managing symbiotic simulation of semiconductor assembly and test operation. In Proceedings of the 14th International Joint Conference on Autonomous Agents and Multiagent Systems. Association for Computing Machinery, New York, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. B. D. Lubachevsky. 1989. Efficient distributed event-driven simulations of multiple-loop networks. Communications of the ACM 32, 1, 111--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. G. R. Madey, M. B. Blake, C. Poellabauer, H. Lu, R. R. McCune, and Y. Wei. 2012. Applying DDDAS principles to command, control and mission planning for UAV swarms. In Proceedings of the International Conference on Compuational Science.Google ScholarGoogle Scholar
  81. A. W. Malik, A. J. Park, and R. M. Fujimoto. 2010. An optimistic parallel simulation protocol for cloud computing environments. SCS Modeling and Simulation Magazine, International Society for Modeling and Simulation, 1, 4.Google ScholarGoogle Scholar
  82. J. Mandel, J. D. Beezley, A. K. Kochanski, V. Y. Kondratenko, and M. Kim. 2012. Assimilation of perimeter data and coupling with fuel moisture in a wildland fire -- atmosphere DDDAS. In Proceedings of the International Conference on Compuational Science.Google ScholarGoogle Scholar
  83. D. C. Miller and J. A. Thorpe. 1995. SIMNET: The advent of simulator networking. In Proceedings of the IEEE 83, 8, 1114--1123.Google ScholarGoogle ScholarCross RefCross Ref
  84. K. L. Morse and M. Zyda. 2001. Multicast grouping for data distribution management. SIMPRA - Journal of Simulation Practice and Theory, Fall.Google ScholarGoogle Scholar
  85. P. Mosterman and H. Vangheluwe. 2004. Computer automated multi-paradigm modeling: An introduction. Simulation: Transactions of the Society for Modeling and Simulation International 80, 9, 433--450.Google ScholarGoogle ScholarCross RefCross Ref
  86. S. Neal, G. Kanitkar, and R. M. Fujimoto. 2014. Power consumption of data distribution management for on-line simulations. Principles of Advanced Discrete Simulation, 197--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. D. M. Nicol and P. Heidelberger. 1996. Parallel execution for sequential simulators. ACM Transactions on Modeling and Computer Simulation 6, 3, 210--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. D. M. Nicol, C. Micheal, and P. Inouye. 1989. Efficient aggregaton of multiple LPs in distributed memory parallel simulations. Winter Simulation Conference, 680--685. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. L. Niu and G. Quan. 2004. Reducing both dynamic and leakage energy consumption for hard real-time systems. International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, 140--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. NVIDIA. 2014. Whitepaper: NVIDIA GeForce GTX 750 Ti.Google ScholarGoogle Scholar
  91. C. M. Overstreet. 1982. Model Specification and Analysis for Discrete Event Simulation, Ph.D. dissertation, Virginia Tech, Blacksburg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. C. M. Overstreet and R. E. Nance. 1985. A specification language to assist in analysis of discrete event simulation models. Communications of the ACM 28, 2, 190--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. E. H. Page, R. Briggs, and J. A. Tufarolo. 2004. Toward a family of maturity models for the simulation interconnection problem. Spring 2004 Simulation Interoperability Workshop, IEEE CS Press.Google ScholarGoogle Scholar
  94. E. H. Page and J. M. Opper. 1999. Observations on the complexity of composable simulation. Winter Simulation Conference, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. A. Park and R. M. Fujimoto. 2012. Efficient master/worker parallel discrete event simulation on metacomputing systems. IEEE Transactions on Parallel and Distributed Systems 23, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. H. Park and P. Fishwick. 2011. An analysis of queuing network simulation using GPU-based hardware acceleration. ACM Transactions on Modeling and Computer Simulation 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia. 2012. Transparent and efficient shared-state management for optimistic simulations on multi-core machines. IEEE Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 134--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. K. S. Perumalla. 2007. Scaling time warp-based discrete event execution to 10**4 processors on a blue gene supercomputer. In Proceedings of the ACM Computing Frontiers Conference. Ischia, Italy. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. K. S. Perumalla, G. A. Brandon, B. Y. Srikanth, and K. S. Sudip. 2009. GPU-based real-time execution of vehicular mobility models in large-scale road network scenarios. Principles of Advanced and Distributed Simulation, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. K. S. Perumalla and S. K. Seal. 2010. Reversible parallel discrete-event execution of large-scale epidemic outbreak models. Principles of Advanced and Distributed Simulation, 106--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. K. S. Perumalla, A. J. Park, and V. Tipparaju. 2014. Discrete event execution with one-sided and two-sided GVT Algorithms on 216,000 processor cores. ACM Transactions on Modeling and Computer Simulation, 24, 3, 16:1--16:25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. M. D. Petty and E. W. Weisel. 2003. A composability lexicon. IEEE Spring Simulation Interoperability Workshop.Google ScholarGoogle Scholar
  103. R. Pienta and R. M. Fujimoto. 2013. On the parallel simulation of scale-free networks. Principles of Advanced and Discrete Simulation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. B. Plale, D. Gannon, and D. Reed. 2005. Towards dynamically adaptive weather analysis and forecasting in LEAD. International Conference on Computational Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. C. Ptolemaeus (Ed.). 2014. System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.Org.Google ScholarGoogle Scholar
  106. G. Quan and X. Hu. 2001. Energy efficient fixed- priority scheduling for real-time systems on variable voltage processors. Design Automation Conference, 828--833. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. G. Riley, M. Ammar, R. M. Fujimoto, A. Park, K. Perumalla, and D. Xu. 2004. A federated approach to distributed network simulation. ACM Transactions on Modeling and Computer Simulation 14, 1, 116--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. B. B. Romdhanne, M. S. M. Bouksiaa, N. Nikaein, and C. Bonnet. 2013. Hybrid scheduling for event-driven simulation over heterogeneous computers. Principles of Advanced Discrete Simulation, 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. A. Santoro and F. Quaglia. 2012. Transparent optimistic synchronization in the high-level architecture via time-management conversion. ACM Transaction on Modeling and Simulation 22, 4, 21:21--21:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. 2009. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing 8, 14--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Scalable Network Technologies. 2012. QualNet. 2012. http://www.scalable-networks.com/content/products/qualnet.Google ScholarGoogle Scholar
  112. W. Shi, K. S. Perumalla, and R. M. Fujimoto. 2003. Power-Aware State Dissemination in Mobile Distributed Virtual Environments. Workshop on Parallel and Distributed Simulation, San Diego. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos. 2003. Power laws and the AS-Level internet topology. IEEE/ACM Transactions on Networking 11, 4, 514--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. K. Soramaki, M. L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler. 2007. The topology of interbank payment flows. Physica A: Statistical Mechanics and Its Applications 379, 1, 317--333.Google ScholarGoogle ScholarCross RefCross Ref
  115. L. Stanisic, B. Videau, J. Cronsioe, A. Degomme, V. Marangozova-Martin, A. Legrand, and J.-F. Mehaut. 2013. Performance analysis of HPC applications on low-power embedded platforms. In Design, Automation Test in Europe Conference Exhibition (DATE’13), 475--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. W. Suh, M. Hunter, and R. M. Fujimoto. 2014. Ad hoc distributed simulation for transportation system monitoring and near-term prediction. Simulation Modeling Practice and Theory 41, 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  117. A. Tolk (Ed.). 2012. Engineering Principles of Combat Modeling and Distributed Simulation. John Wiley and Sons, Hoboken, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. A. Tolk. 2012. Challenges of distributed simulation. Engineering Principles of Combat Modeling and Distributed Simulation. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. O. S. Unsal. 2008. System-Level Power-Aware Computing In Complex Real-Time and Multimedia Systems. Doctor of Philosophy Doctoral Dissertation, University of Massachusetts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. H. Vangheluwe and J. D. Lara. 2002. Meta-models are models too. Winter Simulation Conference, 597--605. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. K. Vanmechelen, S. De Munck, and J. Broeckhove. 2012. Conservative distributed discrete event simulation on amazon EC2. In International Symposium on Cluster, Cloud, and Grid Computing, 853--860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. G. Vulov, C. Hou, R. Vuduc, D. Quinlan, R. M. Fujimoto, and D. Jefferson. 2011. The backstroke framework for source level reverse computation applied to parallel discrete event simulation. In Winter Simulation Conference. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. E. Walker. 2008. Benchmarking amazon EC2 for high performance scientific computing. http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf.Google ScholarGoogle Scholar
  124. X. F. Wang and G. Chen. 2003. Complex networks: Small-world, scale-free and beyond. IEEE Circuits and Systems Magazine 3, 1, 6--20.Google ScholarGoogle ScholarCross RefCross Ref
  125. Y. Xu, G. Tan, X. Li, and X. Song. 2014. Mesoscopic traffic simulation on CPU/GPU. Principles of Advanced Discrete Simulation, 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. V. Yau. 1999. Automating parallel simulation using parallel time streams. ACM Transactions on Modeling and Computer Simulation, 9, 2, 171--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. T. Ye, H. Kaur, S. Kalyanaraman, and M. Yuksel. 2008. Large-scale network parameter configuration using an on-line simulation framework. IEEE/ACM Transactions on Networking 16, 777--790. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. S. B. Yoginath and K. S. Perumalla. 2013. Empirical evaluation of conservative and optimistic discrete event execution on cloud and VM platforms. Principles of Advanced Discrete Simulation, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. A. Yoo and K. W. Henderson. 2010. Parallel generation of massive scale-free graphs. CoRR.Google ScholarGoogle Scholar
  130. L. Zhang, X. Deng, J. Yu, and X. Wu. 2011. The degree and connectivity of internet's scale-free topology. Chinese Physics B 20, 4, 048902.Google ScholarGoogle Scholar
  131. P. Zou, Y.-S. Lu, L.-D. Wu, L.-l. Chen, and Y.-P. Yao. 2013. Epidemic simulation of a large-scale social contact network on gpu clusters. Simulation: Transactions of the Society for Modeling and Simulation International 89, 10, 1154--1172.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Research Challenges in Parallel and Distributed Simulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Modeling and Computer Simulation
          ACM Transactions on Modeling and Computer Simulation  Volume 26, Issue 4
          May 2016
          147 pages
          ISSN:1049-3301
          EISSN:1558-1195
          DOI:10.1145/2892241
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 May 2016
          • Accepted: 1 December 2015
          • Revised: 1 October 2015
          • Received: 1 April 2015
          Published in tomacs Volume 26, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader