skip to main content
research-article

My Text in Your Handwriting

Published:18 May 2016Publication History
Skip Abstract Section

Abstract

There are many scenarios where we wish to imitate a specific author’s pen-on-paper handwriting style. Rendering new text in someone’s handwriting is difficult because natural handwriting is highly variable, yet follows both intentional and involuntary structure that makes a person’s style self-consistent. The variability means that naive example-based texture synthesis can be conspicuously repetitive.

We propose an algorithm that renders a desired input string in an author’s handwriting. An annotated sample of the author’s handwriting is required; the system is flexible enough that historical documents can usually be used with only a little extra effort. Experiments show that our glyph-centric approach, with learned parameters for spacing, line thickness, and pressure, produces novel images of handwriting that look hand-made to casual observers, even when printed on paper.

Skip Supplemental Material Section

Supplemental Material

References

  1. R. M. Alexander. 1984. The gaits of bipedal and quadrupedal animals. Robotics Research 3, 2, 49--59.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Andre and B. Borghi. 1990. Dynamic fonts. Raster Imaging and Digital Typography 198--204.Google ScholarGoogle Scholar
  3. A. Antonacopoulos, B. Gatos, and D. Bridson. 2007. Page segmentation competition. Document Analysis and Recognition 2, 1279--1283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Bellman. 1952. On the theory of dynamic programming. PNAS 38, 8, 716--719.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Belongie and J. Malik. 2000. Matching with shape contexts. Content-Based Access of Image and Video Libraries 81--105.Google ScholarGoogle Scholar
  6. H. Blum. 1967. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form.Google ScholarGoogle Scholar
  7. N. Bonneel, M. van de Panne, S. Lefebvre, and G. Drettakis. 2010. Proxy-guided texture synthesis for rendering natural scenes. Proc. Vision Modeling and Visualization.Google ScholarGoogle Scholar
  8. F. L. Bookstein. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. PAMI 11, 6, 567--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y. Boykov and V. Kolmogorov. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 9, 1124--1137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Y. Boykov and M.-P. Jolly. 2001. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. ICCV 105--112.Google ScholarGoogle Scholar
  11. M. Brand and A. Hertzmann. 2000. Style machines. SIGGRAPH 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Breiman. 2001. Random forests. Machine Learning 45, 1, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. D. F. Campbell and J. Kautz. 2014. Learning a manifold of fonts. TOG 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W.-D. Chang and J. Shin. 2012. A statistical handwriting model for style-preserving and variable character synthesis. Document Analysis and Recognition 15, 1, 1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Choi, S. J. Cho, and J. H. Kim. 2004. Writer dependent online handwriting generation with bayesian networks. Frontiers in Handwriting Recognition 130--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Chowdhury, S. Das, D. Roy, U. Sarkar, and B. B. Chaudhuri. 2009. A complete method of personal handwriting synthesis. Advances in Graphonomics 250--253.Google ScholarGoogle Scholar
  17. D. Comaniciu and P. Meer. 2002. Mean shift: A robust approach toward feature space analysis. PAMI 24, 5, 603--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. D. Connell and A. K. Jain. 2002. Writer adaptation for online handwriting recognition. PAMI 24, 3, 329--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Cooper, A. Hertzmann, and Z. Popovic. 2007. Active learning for real-time motion controllers. TOG 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Correll. 2000. Graphite: An extensible rendering engine for complex writing systems. Unicode Conference 17.Google ScholarGoogle Scholar
  21. A. Criminisi and J. Shotton. 2013. Decision Forests for Computer Vision and Medical Image Analysis. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Dalal and B. Triggs. 2005. Histograms of orientated gradients for human detection. CVPR 886--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Devroye and M. McDougall. 1995. Random fonts for the simulation of handwriting. Electronic Publishing 8, 4, 281--294.Google ScholarGoogle Scholar
  24. L. Dinges, A. Al-Hamadi, and M. Elzobi. 2013. An approach for arabic handwriting synthesis based on active shape models. Document Analysis and Recognition 1260--1264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. C. Doyle. 1901. Letter from Arthur Conan Doyle to Herbert Greenhough Smith. Retrieved from https://commons.wikimedia.org/wiki/File:Letter_from_Arthur_Conan_Doyle_to_Herbert_Greenhough_Smith.jpg, Creative Commons Attribution-Share Alike 2.0, Toronto Public Library. Accessed: 2016-02-09.Google ScholarGoogle Scholar
  26. D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. 2002. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. A. Efros and W. T. Freeman. 2001. Image quilting for texture synthesis and transfer. SIGGRAPH 28, 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. A. Efros and T. K. Leung. 1999. Texture synthesis by non-parametric sampling. ICCV 2, 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Einstein. 1956. Investigations on the theory of the Brownian movement. Courier Dover Publications.Google ScholarGoogle Scholar
  30. Y. Elarian, R. Abdel-Aal, I. Ahmad, M. T. Parvez, and A. Zidouri. 2014. Handwriting synthesis: Classifications and techniques. IJDAR 17, 455--469. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Elarian, I. Ahmad, S. Awaida, W. G. Al-Khatib, and A. Zidouri. 2015. An arabic handwriting synthesis system. Pattern Recognition 48, 3, 849--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Y. S. Elarian, H. A. Al-Muhtaseb, and L. M. Ghouti. 2011. Arabic handwriting synthesis. Frontiers in Arabic Handwriting Recognition.Google ScholarGoogle Scholar
  33. L. R. Ford and D. R. Fulkerson. 1956. Maximal flow through a network. Canadian Journal of Mathematics 8, 399--404.Google ScholarGoogle ScholarCross RefCross Ref
  34. K. Fukunaga and L. D. Hostetler. 1975. The estimation of the gradient of a density function, with applications in pattern recognition. Trans. Information Theory 21, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Gangadhar, D. Joseph, and V. S. Chakravarthy. 2007. An oscillatory neuromotor model of handwriting generation. Document Analysis and Recognition 10, 2, 69--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Garner. 2005. Post-it note persuasion: A sticky influence. J. Consumer Psychology 15, 230--237.Google ScholarGoogle ScholarCross RefCross Ref
  37. A. Graves. 2013. Generating sequences with recurrent neural networks. arXiv Preprint.Google ScholarGoogle Scholar
  38. W. Guerfali and R. Plamondon. 1995. The delta lognormal theory for the generation and modeling of cursive characters. Document Analysis and Recognition 3, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Gupta and A. Mccabe. 1997. A Review of Dynamic Handwritten Signature Verification. Technical Report. James Cook University.Google ScholarGoogle Scholar
  40. I. Guyon. 1996. Handwriting synthesis from handwritten glyphs. Frontiers of Handwriting Recognition 309--312.Google ScholarGoogle Scholar
  41. T. S. F. Haines and T. Xiang. 2014. Active rare class discovery and classification using Dirichlet processes. IJCV 106, 3, 315--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. G. Hinton and V. Nair. 2005. Inferring motor programs from images of handwritten digits. NIPS 515--522.Google ScholarGoogle Scholar
  43. T. K. Ho. 1995. Random decision forests. Proc. Document Analysis and Recognition 1, 278--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. W. Huang, Z. Lin, J. Yang, and J. Wang. 2013. Text localization in natural images using stroke feature transform and text covariance descriptors. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Charles Jacobs, Wil Li, Evan Schrier, David Bargeron, and David Salesin. 2004. Adaptive document layout. Commun. ACM 47, 8, 60--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. E. Kalman. 1960. A new approach to linear filtering and prediction problems. ASME--Basic Engineering 82, 35--45.Google ScholarGoogle ScholarCross RefCross Ref
  47. D. E. Knuth. 1979. METAFONT: A System for Alphabet Design. Technical Report. Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. 2003. Graphcut textures: Image and video synthesis using graph cuts. TOG 22, 3, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Hyunjun Lee, Sungtae Kwon, and Seungyong Lee. 2006. Real-time pencil rendering. In NPAR. 37--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. J. P. Lewis. 1984. Texture synthesis for digital painting. Computer Graphics 18, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Z. Lin and L. Wan. 2007. Style-preserving english handwriting synthesis. Pattern Recognition 40, 2097--2109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. D. G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. IJCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Lu, F. Yu, A. Finkelstein, and S. DiVerdi. 2012. HelpingHand: Example-based stroke stylization. SIGGRAPH 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Mao and K. M. Mohiuddin. 1997. Improving OCR performance using character degradation models and boosting algorithm. Pattern Recognition Letters 18, 1415--1419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. B. Marcelo, G. Sapiro, V. Caselles, and C. Ballester. 2000. Image inpainting. SIGGRAPH 27, 417--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. U.-V. Marti and H. Bunke. 2002. Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition systems. PRAI 15.Google ScholarGoogle Scholar
  57. U. Mohammed, S. J. D. Prince, and J. Kautz. 2009. Visio-lization: Generating novel facial images. TOG 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Mori, A. Suzuki, A. Shio, and S. Ohtsuka. 2000. Generating new samples from handwritten numerals based on point correspondence. IWFHR 7, 281--290.Google ScholarGoogle Scholar
  59. S. Mueller, N. Huebel, M. Waibel, and R. D. Andrea. 2013. Robotic calligraphy - learning how to write single strokes of Chinese and Japanese characters. IROS 1734--1739.Google ScholarGoogle Scholar
  60. P. Norvig. 2014. Letter Frequencies for Scrabble. http://norvig.com/scrabble-letter-scores.html. Accessed: 2014-05-03.Google ScholarGoogle Scholar
  61. S. J. Pan and Q. Yang. 2010. A survey on transfer learning. Knowledge and Data Engineering 22, 10, 1345--1359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. G. Papandreou and A. L. Yuille. 2011. Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models. ICCV 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. S. N. Parizi, A. Vedaldi, A. Zisserman, and P. Felzenszwalb. 2014. Automatic discovery and optimization of parts for image classification. arXiv Preprint, arXiv:1412.6598.Google ScholarGoogle Scholar
  64. V. Pervouchine and G. Leedham. 2007. Extraction and analysis of forensic document examiner features used for writer identification. Pattern Recognition 40, 3, 1004--1013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. R. Plamondon and S. N. Srihari. 2000. On-line and off-line handwriting recognition: A comprehensive survey. PAMI 22, 1, 63--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. T. Porter and T. Duff. 1984. Compositing digital images. Computer Graphics 18, 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Javier Portilla and Eero P. Simoncelli. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV 40, 1, 49--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Project Gutenberg. 2014. Homepage. Retrieved from http://www.gutenberg.org/. Accessed: 2014-05-03.Google ScholarGoogle Scholar
  69. Tobias Reinhardt. 2014. My Script Font. Retrieved from http://myscriptfont.com. Accessed: 2014-05-03.Google ScholarGoogle Scholar
  70. C. Rother, V. Kolmogorov, and A. Blake. 2004. “GrabCut” interactive foreground extraction using iterated graph cuts. TOG 23, 3, 309--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Scrabble. 2014. History of Scrabble. Retrieved from http://www.scrabble-assoc.com/info/history.html. Accessed: 2014-05-03.Google ScholarGoogle Scholar
  72. A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. 2000. Video textures. SIGGRAPH 27, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. M. Schroder. 2001. Emotional speech synthesis: A review. Interspeech 561--564.Google ScholarGoogle Scholar
  74. M. Shilman, D. S. Tan, and P. Simard. 2006. CueTIP: A mixed-initiative interface for correcting handwriting errors. User Interface Software and Technology 323--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. N. Srihari, S.-H. Cha, H. Arora, and S. Lee. 2002. Individuality of handwriting. Journal of Forensic Science 47, 4.Google ScholarGoogle ScholarCross RefCross Ref
  76. J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. 2005. Image completion with structure propagation. TOG 24, 3, 861--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. A. O. Thomas, A. Rusu, and V. Govindaraju. 2009. Synthetic handwritten CAPTCHAs. Pattern Recognition 42, 12, 3365--3373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. G. P. van Galen. 1991. Handwriting: Issues for a psychomotor theory. Human Movement Science 10, 165--191.Google ScholarGoogle ScholarCross RefCross Ref
  79. T. Varga and H. Bunke. 2003. Generation of synthetic training data for an HMM-based handwriting recognition system. Document Analysis and Recognition 618--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. T. Varga and H. Bunke. 2004. Comparing natural and synthetic training data for off-line cursive handwriting recognition. Frontiers in Handwriting Recognition 9, 221--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. L. Wan and Z. Lin. 2009. Signature sample synthesis. Encyclopedia of Biometrics 1205--1210.Google ScholarGoogle Scholar
  82. J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum. 2004. Combining shape and physical models for online cursive handwriting synthesis. Document Analysis and Recognition 7, 4, 219--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. J. Wang, C. Wu, Y.-Q. Xu, H.-Y. Shum, and L. Ji. 2002. Learning-based cursive handwriting synthesis. Frontiers in Handwriting Recognition 8, 157--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Y. Wang, H. Wang, C. Pan, and L. Fang. 2008. Style preserving Chinese character synthesis based on hierarchical representation of character. Acoustics, Speech and Signal Processing 1097--1100.Google ScholarGoogle Scholar
  85. J. Warnock, C. Geschke, D. Brotz, E. Taft, and B. Paxton. 1984. PostScript. Retrieved from https://www.adobe.com/products/postscript/pdfs/postscript_is_20.pdf. Accessed: 2014-11-29.Google ScholarGoogle Scholar
  86. L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. 2009. State of the art in example-based texture synthesis. Eurographics 93--117.Google ScholarGoogle Scholar
  87. L. Werner. 1999. Getting Java ready for the world: A brief history of IBM and Sun’s internationalization efforts. Retrieved from http://www.icu-project.org/docs/papers/history_of_java_internationalization.html. Accessed: 2014-12-6.Google ScholarGoogle Scholar
  88. B. H. Williams, M. Toussaint, and A. J. Storkey. 2007. Modelling motion primitive and their timing in biologically executed movements. NIPS 1609--1616.Google ScholarGoogle Scholar
  89. George Williams. 2014. Font Forge. Retrieved from http://fontforge.org/.Google ScholarGoogle Scholar
  90. C. Xiong, D. Johnson, R. Xu, and J. J. Corso. 2012. Random forests for metric learning with implicit pairwise position dependence. Knowledge Discovery and Data Mining 18, 958--966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. T. Y. Zhang and C. Y. Suen. 1984. A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 3, 236--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Y. Zheng and D. Doermann. 2005. Handwriting matching and its application to handwriting synthesis. Document Analysis and Recognition 8, 861--865. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. C. L. Zitnick. 2013. Handwriting beautification using token means. TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 3
    June 2016
    128 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2903775
    Issue’s Table of Contents

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 18 May 2016
    • Accepted: 1 January 2016
    • Received: 1 September 2015
    Published in tog Volume 35, Issue 3

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader