skip to main content
10.1145/2897518.2897533acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article
Public Access

Distributed (∆+1)-coloring in sublogarithmic rounds

Published:19 June 2016Publication History

ABSTRACT

The (∆+1)-coloring problem is a fundamental symmetry breaking problem in distributed computing. We give a new randomized coloring algorithm for (∆+1)-coloring running in O(√log ∆)+ 2^O(√log log n) rounds with probability 1-1/n^Ω(1) in a graph with n nodes and maximum degree ∆. This implies that the (∆+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to the list-coloring problem where the palette of each node contains ∆+1 colors.

References

  1. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and locality in distributed computation. In Symp. on Foundations of Computer Science (FOCS), 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. A distributed (2 + )-approximation for vertex cover in O(log ∆/ log log ∆) rounds. arXiv preprint arXiv:1602.03713, 2016.Google ScholarGoogle Scholar
  4. L. Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dynamic and faulty networks. In Symp. on Principles of Distributed Computing(PODC), pages 345–354, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic time. J. ACM, 58(5):23, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Barenboim and M. Elkin. Distributed graph coloring: Fundamentals and recent developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  7. L. Barenboim, M. Elkin, and C. Gavoille. A fast network-decomposition algorithm and its applications to constant-time distributed computation. CoRR, abs/1505.05697, 2015.Google ScholarGoogle Scholar
  8. L. Barenboim, M. Elkin, and F. Kuhn. Distributed (∆ + 1)-coloring in linear (in ∆) time. SIAM Journal on Computing, 43(1):72–95, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  9. L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry breaking. In Symp. on Foundations of Computer Science (FOCS), pages 321–330. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K.-M. Chung, S. Pettie, and H.-H. Su. Distributed algorithms for Lovász local lemma and graph coloring. In Proc. 33rd ACM Symposium on Principles of Distributed Computing (PODC), pages 134–143, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Dubhashi, D. A. Grable, and A. Panconesi. Near-optimal, distributed edge colouring via the nibble method. Theor. Comput. Sci., 203(2):225–251, Aug. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Elkin, S. Pettie, and H.-H. Su. (2∆ − 1)-edge-coloring is much easier than maximal matching in the distributed setting. In Symp. on Discrete Algorithms (SODA), pages 355–370. SIAM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. arXiv preprint arXiv:1511.01287, 2015.Google ScholarGoogle Scholar
  14. B. Gfeller and E. Vicari. A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In Symp. on Principles of Distributed Computing, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016. to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. V. Goldberg and S. A. Plotkin. Parallel (∆ + 1)-coloring of constant-degree graphs. Information Processing Letters, 25(4):241 – 245, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM J. Discrete Math., 1(4):434–446, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Göös, J. Hirvonen, and J. Suomela. Linear-in-∆ lower bounds in the local model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing(PODC), pages 86–95, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. A. Grable and A. Panconesi. Nearly optimal distributed edge coloring in O(log log n) rounds. Random Structures & Algorithms, 10(3):385–405, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. A. Grable and A. Panconesi. Fast distributed algorithms for Brooks–Vizing colorings. Journal of Algorithms, 37(1):85 – 120, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Hirvonen and J. Suomela. Distributed maximal matching: Greedy is optimal. In Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing(PODC), pages 165–174, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ö. Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett., 70, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in ˜ O( √ log n) bit rounds. In Proc. 20th International Parallel and Distributed Processing Symposium (IPDPS), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Symp. on Principles of Distributed Computing (PODC), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper bounds. arXiv preprint arXiv:1011.5470, 2010.Google ScholarGoogle Scholar
  26. F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In Symp. on Principles of Distributed Computing (PODC), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193–201, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM Journal on Computing, 15:1036–1053, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica, 18(2):241–280, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Algorithms and Combinatorics. Springer, 2001.Google ScholarGoogle Scholar
  32. M. Molloy and B. Reed. Asymptotically optimal frugal colouring. J. Comb. Theory, Ser. B, 100(2):226–246, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Molloy and B. Reed. Colouring graphs when the number of colours is almost the maximum degree. Journal of Combinatorial Theory, Series B, 109:134 – 195, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network decomposition problems. In Symp. on Theory of computing (STOC), 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the Chernoff–Hoeffding bounds. SIAM Journal on Computing, 26(2):350–368, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Pettie and H.-H. Su. Distributed coloring algorithms for triangle-free graphs. Information and Computation, 243(0):263 – 280, 2015. Preliminary version appeared in 40th Intl. Colloq. on Automata, Languages and Programming (ICALP), pages 681–693, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. B. Reed. ω, ∆, and χ. Journal of Graph Theory, 27(4):177–212, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. B. Reed. A strengthening of brooks’ theorem. Journal of Combinatorial Theory, Series B, 76(2):136 – 149, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Schneider, M. Elkin, and R. Wattenhofer. Symmetry breaking depending on the chromatic number or the neighborhood growth. Theoretical Computer Science, 509:40–50, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set algorithm for growth-bounded graphs. In Symp. on Principles of Distributed Computing(PODC), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Schneider and R. Wattenhofer. A new technique for distributed symmetry breaking. In Symp. on Principles of Distributed Computing(PODC), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Szegedy and S. Vishwanathan. Locality based graph coloring. In Proc. 25th ACM Symposium on Theory of Computing (STOC), pages 201–207, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed (∆+1)-coloring in sublogarithmic rounds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '16: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing
      June 2016
      1141 pages
      ISBN:9781450341325
      DOI:10.1145/2897518

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 June 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader