skip to main content
research-article

Adjoint-driven Russian roulette and splitting in light transport simulation

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

While Russian roulette (RR) and splitting are considered fundamental importance sampling techniques in neutron transport simulations, they have so far received relatively little attention in light transport. In computer graphics, RR and splitting are most often based solely on local reflectance properties. However, this strategy can be far from optimal in common scenes with non-uniform light distribution as it does not accurately predict the actual path contribution. In our approach, like in neutron transport, we estimate the expected contribution of a path as the product of the path weight and a pre-computed estimate of the adjoint transport solution. We use this estimate to generate so-called weight window which keeps the path contribution roughly constant through RR and splitting. As a result, paths in unimportant regions tend to be terminated early while in the more important regions they are spawned by splitting. This results in substantial variance reduction in both path tracing and photon tracing-based simulations. Furthermore, unlike the standard computer graphics RR, our approach does not interfere with importance-driven sampling of scattering directions, which results in superior convergence when such a technique is combined with our approach. We provide a justification of this behavior by relating our approach to the zero-variance random walk theory.

Skip Supplemental Material Section

Supplemental Material

a42.mp4

mp4

207.7 MB

References

  1. Aldous, D., and Vazirani, U. 1994. "Go with the winners" algorithms. In Proc. 35th IEEE Symp. on Found. of Comp. Sci. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arvo, J., and Kirk, D. 1990. Particle transport and image synthesis. In Proc. SIGGRAPH '90, ACM, 63--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bashford-Rogers, T., Debattista, K., and Chalmers, A. 2012. A significance cache for accelerating global illumination. Computer Graphics Forum 31, 6, 1837--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bashford-Rogers, T., Debattista, K., and Chalmers, A. 2013. Importance driven environment map sampling. IEEE Trans. Vis. Comput. Graphics 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bolin, M. R., and Meyer, G. W. 1997. An error metric for Monte Carlo ray tracing. In In Rendering Techniques '97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Booth, T., E., and Hendricks, J., S. 1984. Importance estimation in forward MC calculations. Nuc. Tech./Fusion 5, 1.Google ScholarGoogle Scholar
  7. Booth, T. E. 1985. Monte Carlo variance comparison for expected-value versus sampled splitting. Nucl. Sci. Eng. 89, 4.Google ScholarGoogle ScholarCross RefCross Ref
  8. Booth, T., E. 2006. Genesis of the weight window and the weight window generator in MCNP - a personal history. Tech. Rep. LA-UR-06-5807, July.Google ScholarGoogle Scholar
  9. Booth, T., E. 2012. Common misconceptions in Monte Carlo particle transport. Applied Radiation and Isotopes 70.Google ScholarGoogle Scholar
  10. Christensen, P. H. 2003. Adjoints and importance in rendering: An overview. IEEE Trans. Vis. Comput. Graphics 9, 3, 329--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dutré, P., and Willems, Y. 1994. Importance-driven Monte Carlo light tracing. In Eurographics Workshop on Rendering.Google ScholarGoogle Scholar
  13. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination, 2nd ed. A. K. Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gassenbauer, V., Křivánek, J., and Bouatouch, K. 2009. Spatial directional radiance caching. Computer Graphics Forum (EGSR 2009) 28, 4, 1189--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Georgiev, I., and Slusallek, P. 2010. Simple and Robust Iterative Importance Sampling of Virtual Point Lights. Proceedings of Eurographics (short papers).Google ScholarGoogle Scholar
  16. Georgiev, I., Křivánek, J., Davidovič, T., and Slusallek, P. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. (SIGGRAPH Asia '12) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Grassberger, P. 2002. Go with the winners: a general Monte Carlo strategy. In Comp. Phys. Commun., vol. 147, 64--70.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. (SIGGRAPH Asia '08) 27, 5 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hachisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (SIGGRAPH Asia '12) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hammersley, J., and Handscomb, D. 1964. Monte Carlo Methods. Chapman and Hall, New York.Google ScholarGoogle Scholar
  21. Hey, H., and Purgathofer, W. 2002. Importance sampling with hemispherical particle footprints. In SCCG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hoogenboom, Eduard, J., and Légrády, D. 2005. A critical review of the weight window generator in MCNP. Monte Carlo 2005 Topical Meeting (Apr.).Google ScholarGoogle Scholar
  23. Hoogenboom, Eduard, J. 2008. Zero-variance Monte Carlo schemes revisited. Nucl. Sci. Eng. 160, 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  24. Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.Google ScholarGoogle Scholar
  25. Jensen, H. W. 1995. Importance driven path tracing using the photon map. In Eurographics Workshop Rendering, 326--335.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques '96, Springer-Verlag, London, UK, UK, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kahn, H., and Harris, T., E. 1951. Estimation of particle transmission by random sampling. In Nat. Bur. of Stand. Appl. Math. Ser., vol. 12, 27--30.Google ScholarGoogle Scholar
  29. Kahn, H. 1956. Use of different Monte Carlo sampling techniques. In Symp. on Monte Carlo Methods, New York: Wiley.Google ScholarGoogle Scholar
  30. Kajiya, J. T. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4 (Aug.), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kalos, M. H. 1963. Importance sampling in Monte Carlo shielding calculations: I. neutron penetration through thick hydrogen slabs. In Nuclear Science and Engineering, vol. 16, 227--234.Google ScholarGoogle ScholarCross RefCross Ref
  32. Keller, A., and Wald, I. 2000. Efficient importance sampling techniques for the photon map. In Proc. Fifth Fall Workshop Vision, Modeling, and Visualisation, 271--279.Google ScholarGoogle Scholar
  33. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comp. Graph. 11, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Křivánek, J., Georgiev, I., Hachisuka, T., Vévoda, P., Šik, M., Nowrouzezahrai, D., and Jarosz, W. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. 33, 4 (Aug.), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Křivánek, J., Keller, A., Georgiev, I., Kaplanyan, A., Fajardo, M., Meyer, M., Nahmias, J.-D., Karlík, O., and Canada, J. 2014. Recent advances in light transport simulation: Some theory and a lot of practice. In ACM SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIGGRAPH '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Křivánek, J., and d'Eon, E. 2014. A zero-variance-based sampling scheme for Monte Carlo subsurface scattering. In ACM SIGGRAPH 2014 Talks, ACM, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Lehtinen, J., Karras, T., Laine, S., Aittala, M., Durand, F., and Aila, T. 2013. Gradient-domain metropolis light transport. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lux, I., and Koblinger, L. 1991. Monte Carlo particle transport methods: neutron and photon calculations. CRC Press.Google ScholarGoogle Scholar
  39. Meinl, F., 2010. Crytek sponza. http://www.crytek.com/cryengine/cryengine3/downloads.Google ScholarGoogle Scholar
  40. Popov, S., Ramamoorthi, R., Durand, F., and Drettakis, G. 2015. Probabilistic connections for bidirectional path tracing. Computer Graphics Forum (Proc. of EGSR) 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Seymour, M., 2014. Manuka: Weta digital's new renderer. http://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/.Google ScholarGoogle Scholar
  42. Spanier, J., and Gelbard, Ely, M. 1969. Monte Carlo principles and neutron transport problems. Addison-Wesley.Google ScholarGoogle Scholar
  43. Suykens, F., and Willems, Y. D. 2000. Density control for photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Springer-Verlag, London, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Szécsi, L., Szirmay-Kalos, L., and Kelemen, C. 2003. Variance reduction for russian roulette. Journal of WSCG.Google ScholarGoogle Scholar
  45. Szirmay-Kalos, L., and Antal, G. 2005. Go with the winners strategy in path tracing. In Journal of WSCG., vol. 13.Google ScholarGoogle Scholar
  46. Veach, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Vorba, J., Karlík, O., Šik, M., Ritschel, T., and Křivá nek, J. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. (SIGGRAPH '14) 33, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wagner, J., C., and Haghighat, A. 1998. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function. In Nulc. Sci. Eng., vol. 128.Google ScholarGoogle Scholar
  49. Wagner, J., C. 1997. Acceleration of Monte Carlo shielding calculations with an automated variance reduction technique and parallel processing. PhD thesis, The Pennsylvania State Univ.Google ScholarGoogle Scholar
  50. X-5 Monte Carlo team. 2003. MCNP -- A general Monte Carlo N-particle transport code, version 5. Tech. Rep. LA-UR-03-1987, Los Alamos National Laboratory, Apr.Google ScholarGoogle Scholar
  51. Xu, Q., Sun, J., Wei, Z., Shu, Y., Messelodi, S., and Cai, J. 2001. Zero variance importance sampling driven potential tracing algorithm for global illumination. In Journal of WSCG. 2001, vol. 9.Google ScholarGoogle Scholar

Index Terms

  1. Adjoint-driven Russian roulette and splitting in light transport simulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader