skip to main content
10.1145/2933575.2935311acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Complexity Theory of (Functions on) Compact Metric Spaces

Published:05 July 2016Publication History

ABSTRACT

We promote the theory of computational complexity on metric spaces: as natural common generalization of (i) the classical discrete setting of integers, binary strings, graphs etc. as well as of (ii) the bit-complexity theory on real numbers and functions according to Friedman, Ko (1982ff), Cook, Braverman et al.; as (iii) resource-bounded refinement of the theories of computability on, and representations of, continuous universes by Pour-El&Richards (1989) and Weihrauch (1993ff); and as (iv) computational perspective on quantitative concepts from classical Analysis: Our main results relate (i.e. upper and lower bound) Kolmogorov's entropy of a compact metric space X polynomially to the uniform relativized complexity of approximating various families of continuous functions on X. The upper bounds are attained by carefully crafted oracles and bit-cost analyses of algorithms perusing them. They all employ the same representation (i.e. encoding, as infinite binary sequences, of the elements) of such spaces, which thus may be of own interest. The lower bounds adapt adversary arguments from unit-cost Information-Based Complexity to the bit model. They extend to, and indicate perhaps surprising limitations even of, encodings via binary string functions (rather than sequences) as introduced by Kawamura&Cook (SToC'2010, §3.4). These insights offer some guidance towards suitable notions of complexity for higher types.

References

  1. {ACN07} K. Aehlig, S. Cook, P. Nguyen: "Relativizing Small Complexity Classes and their Theories", pp. 374--388 in Proc. 21st Int. Workshop on Computer Science Logic, 16th Ann. Conf. EACSL, LNCS vol. 4646 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {Brat02} V. Brattka: "Some Notes on Fine Computability", J. Universal Computer Science vol.8:3 (2002).Google ScholarGoogle Scholar
  3. {BrCo06} M. Braverman, S.A. Cook: "Computing over the Reals: Foundations for Scientific Computing", pp. 318--329 in Notices of the AMS vol.53:3 (2006).Google ScholarGoogle Scholar
  4. {Buss88} J.F. Buss: "Relativized Alternation and Space-Bounded Computation", pp. 351--378 in Journal of Computer and System Sciences vol.36 (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {dBYa10} M. de Brecht, A. Yamamoto: "Topological properties of concept spaces", pp. 327--340 in Information and Computation vol.208:4 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {CSV13} S. Chaudhuri, S. Sankaranarayanan, M.Y. Vardi: "Regular Real Analysis", pp. 509--518 in Proc. 28th Ann. IEEE Symposium on Logic in Computer Science (LiCS2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {DaRo09} N. Danner, J.S. Royer: "Ramified Structural Recursion and Corecursion", arXiv:1201.4567 (2012).Google ScholarGoogle Scholar
  8. {Esca13} M.H. Escardó: "Algorithmic Solution of Higher-Type Equations", pp. 839--854 in Journal of Logic and Computation vol.23:4 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  9. {FeZi15} H. Férée, M. Ziegler: "On the Computational Complexity of Positive Linear Functionals on C{0; 1}", presented at CCA2015; extended abstract in Proc. 6th Int. Conf. on Math. Aspects of Computer and Information Sciences (2015).Google ScholarGoogle Scholar
  10. {FeHo13} H. Férée: "Higher-order Complexity in Analysis", in Proc. 10th International Conference on Computability and Complexity in Analysis (CCA2013); Inria hal-00915973.Google ScholarGoogle Scholar
  11. {FGH14} H. Férée, W. Gomaa, M. Hoyrup: "Analytical properties of resource-bounded real functionals", pp. 647--671 in Journal of Complexity vol.30:5 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  12. {FHHP15} H. Férée, E. Hainry, M. Hoyrup, R. Péchoux: "Characterizing Polynomial Time Complexity of Stream Programs using Interpretations", pp. 41--54 in Theoretical Computer Science vol. 595 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {FlGr06} J. Flum, M. Grohe: Parameterized Complexity Theory, Springer (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {GrKi14} V. Gregoriades, T. Kihara: "Recursion and Effectivity in the Decomposability Conjecture", submitted; arXiv:1410.1052 (2014).Google ScholarGoogle Scholar
  15. {Hert99} P. Hertling: "A Real Number Structure that is Effectively Categorical", pp. 147--182 in Mathematical Logic Quarterly vol.45:2 (1999).Google ScholarGoogle ScholarCross RefCross Ref
  16. {Hert04} P. Hertling: "A BanachMazur computable but not Markov computable function on the computable real numbers", pp. 227--246 in Ann. Pure and Applied Logic vol.132 (2004).Google ScholarGoogle Scholar
  17. {IRK01} R.J. Irwin, J.S. Royer, B.M. Kapron: "On Characterizations of the Basic Feasible Functionals (Part I)", pp. 117--153 in J. Func. Program. vol.11:1 (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {KaCo96} B.M. Kapron, S.A. Cook: "A New Characterization of Type-2 Feasibility", pp. 117--132 in SIAM Journal on Computing vol.25:1 (1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {KaCo10} A. Kawamura, S.A. Cook: "Complexity Theory for Operators in Analysis", pp. 495--502 in Proc. 42nd Ann. ACM Symp. on Theory of Computing (STOC 2010); full version in ACM Transactions in Computation Theory vol.4:2 (2012), article 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {KaOt14} A. Kawamura, H. Ota: "Small Complexity Classes for Computable Analysis", pp. 432--444 in Proc. 39th Int. Symp. on Math. Found. Computer Science (MFCS2014), Springer LNCS vol.8635.Google ScholarGoogle Scholar
  21. {KaPa14} A. Kawamura, A. Pauly: "Function Spaces for Second-Order Polynomial Time", pp. 245--254 in Proc. 10th Conf. on Computability in Europe, Springer LNCS vol.8493 (2014).Google ScholarGoogle Scholar
  22. {KaPa15} A. Kawamura, A. Pauly: "Function Spaces for Second-Order Polynomial Time", arXiv:1401.2861v2 (2015).Google ScholarGoogle Scholar
  23. {KMRZ15} A. Kawamura, N. Müller, C. Rösnick, M. Ziegler: "Computational Benefit of Smoothness: Parameterized Bit-Complexity of Numerical Operators on Analytic Functions and Gevrey's Hierarchy", pp. 689--714 in Journal of Complexity vol.31:5 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {Ko91} K.-I. Ko: Computational Complexity of Real Functions, Birkhäuser (1991).Google ScholarGoogle Scholar
  25. {Kohl08} U. Kohlenbach: Applied Proof Theory, Springer (2008).Google ScholarGoogle Scholar
  26. {KORZ12} A. Kawamura, H. Ota, C. Rösnick, M. Ziegler: "Computational Complexity of Smooth Differential Equations", pp. 578--589 in Proc. 37th Int.Symp. Math. Found. Comp. Sci. (MFCS'2012), Springer LNCS vol.7464; full version in Logical Methods in Computer Science vol.10:1 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {KoTi59} A.N. Kolmogorov, V.M. Tikhomirov: "ϵ-Entropy and ϵ-Capacity of Sets in Functional Spaces", pp. 3--86 in Uspekhi Mat. Nauk vol.14:2 (1959); also pp.86--170 in Selected Works of A.N. Kolmogorov vol.III (A.N. Shiryayev Edt.), Nauka (1987) and Springer (1993).Google ScholarGoogle Scholar
  28. {KRC00} V. Kabanets, C. Rackoff, S.A. Cook: "Efficiently Approximable Real-Valued Functions", ECCC Report No.34 (2000).Google ScholarGoogle Scholar
  29. {KSZ14} A. Kawamura, F. Steinberg, M. Ziegler: "Complexity of Laplace's and Poisson's Equation", abstract p.231 in Bulletin of Symbolic Logic vol.20:2 (2014); full version to appear in Mathem. Structures in Computer Science (2016).Google ScholarGoogle Scholar
  30. {Lamb06} B. Lambov: "The basic feasible functionals in computable analysis", pp. 909--917 in Journal of Complexity vol.22:6 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {Mehl76} K. Mehlhorn: "Polynomial and Abstract Subrecursive Classes", pp. 147--178 in Journal of Computer and System Sciences vol.12:2 (1976). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. {Nied06} R. Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press (2006).Google ScholarGoogle Scholar
  33. {PaZi13} A. Pauly, M. Ziegler: "Relative Computability and Uniform Continuity of Relations", vol.5 in the Journal of Logic and Analysis (2013).Google ScholarGoogle Scholar
  34. {PER89} M.B. Pour-El, I. Richards: Computability in Analysis and Physics, Springer (1989).Google ScholarGoogle Scholar
  35. {Rett12} R. Rettinger: "On computable approximations of Landau's constant", Logical Methods in Computer Science vol.8(4) (2012).Google ScholarGoogle Scholar
  36. {Schr95} M. Schröder: "Topological Spaces Allowing Type-2 Complexity Theory", in Workshop on Computability and Complexity in Analysis, Informatik-Berichte 190, FernUniversität Hagen (1995).Google ScholarGoogle Scholar
  37. {Schr04} M. Schröder: "Spaces Allowing Type-2 Complexity Theory Revisited", pp. 443--459 in Mathematical Logic Quarterly vol.50 (2004).Google ScholarGoogle Scholar
  38. {Schr06} M. Schröder: "Admissible Representations in Computable Analysis", pp. 471--480 in Proc. 2nd Conf. on Computability in Europe (CiE'06), LNCS vol.3988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. {Tima63} A.F. Timan: Theory of Approximation of Functions of a Real Variable, Pergamon (1963).Google ScholarGoogle Scholar
  40. {Weih00} K. Weihrauch: Computable Analysis, Springer (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. {Weih03} K. Weihrauch: "Computational Complexity on Computable Metric Spaces", pp. 3--21 in Mathematical Logic Quarterly vol.49:1 (2003).Google ScholarGoogle Scholar
  42. {WeZh02} K. Weihrauch, N. Zhong: "Is Wave Propagation Computable or Can Wave Computers Beat the Turing Machine?", pp. 312--332 in Proc. London Mathem. Society vol.85:2 (2002).Google ScholarGoogle Scholar
  43. {Wils88} C.B. Wilson: "A measure of relativized space which is faithful with respect to depth", pp. 303--312 in J. Comput. System Sci. vol.36 (1988). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. {Zieg07} M. Ziegler: "Real Hypercomputation and Continuity", pp. 177--206 in Theory of Computing Systems vol.41 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Complexity Theory of (Functions on) Compact Metric Spaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        LICS '16: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
        July 2016
        901 pages
        ISBN:9781450343916
        DOI:10.1145/2933575

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 July 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate143of386submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader