skip to main content
10.1145/2934872.2934889acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Virtualized Congestion Control

Published:22 August 2016Publication History

ABSTRACT

New congestion control algorithms are rapidly improving datacenters by reducing latency, overcoming incast, increasing throughput and improving fairness. Ideally, the operating system in every server and virtual machine is updated to support new congestion control algorithms. However, legacy applications often cannot be upgraded to a new operating system version, which means the advances are off-limits to them. Worse, as we show, legacy applications can be squeezed out, which in the worst case prevents the entire network from adopting new algorithms.

Our goal is to make it easy to deploy new and improved congestion control algorithms into multitenant datacenters, without having to worry about TCP-friendliness with non-participating virtual machines. This paper presents a solution we call virtualized congestion control. The datacenter owner may introduce a new congestion control algorithm in the hypervisors. Internally, the hypervisors translate between the new congestion control algorithm and the old legacy congestion control, allowing legacy applications to enjoy the benefits of the new algorithm. We have implemented proof-of-concept systems for virtualized congestion control in the Linux kernel and in VMware’s ESXi hypervisor, achieving improved fairness, performance, and control over guest bandwidth allocations.

References

  1. Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP). ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis of DCTCP: stability, convergence, and fairness. ACM SIGMETRICS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, and Mark Handley. Improving datacenter performance and robustness with multipath TCP. ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware Datacenter TCP (D2TCP). ACM SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo, Yongqiang Xiong, and Yongguang Zhang. Tuning ECN for data center networks. ACM CoNEXT, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brent Stephens, Alan L Cox, Anubhav Singla, Jenny Carter, Colin Dixon, and Wes Felter. Practical DCB for improved data center networks. IEEE Infocom, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  7. Glenn Judd. Attaining the promise and avoiding the pitfalls of TCP in the datacenter. USENIX NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al. TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu Han. Accurate latency-based congestion feedback for datacenters. USENIX ATC, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Qingxi Li, Mo Dong, and Brighten Godfrey. Halfback: Running short flows quickly and safely. ACM CoNEXT, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. Congestion control for large-scale RDMA deployments. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Prasanthi Sreekumari and Jae-il Jung. Transport protocols for data center networks: a survey of issues, solutions and challenges. Photonic Network Communications, pages 1–17, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Keith Winstein and Hari Balakrishnan. TCP ex machina: Computer-generated congestion control. ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan. An experimental study of the learnability of congestion control. ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mo Dong, Qingxi Li, Doron Zarchy, Brighten Godfrey, and Michael Schapira. Rethinking congestion control architecture: Performance-oriented congestion control. ACM SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mirja Kuhlewind, David P Wagner, Juan Manuel Reyes Espinosa, and Bob Briscoe. Using Data Center TCP (DCTCP) in the Internet. IEEE Globecom Workshops, 2014.Google ScholarGoogle Scholar
  17. Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich, Avinoam Kolodny, and Isaac Keslassy. Links as a Service (LaaS): Guaranteed tenant isolation in the shared cloud. ACM/IEEE ANCS, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford. Central control over distributed routing. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Michele Luglio, M Yahya Sanadidi, Mario Gerla, and James Stepanek. On-board satellite split TCP proxy. IEEE J. Select. Areas Commun., 22(2):362–370, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Xiang Chen, Hongqiang Zhai, Jianfeng Wang, and Yuguang Fang. A survey on improving TCP performance over wireless networks. Resource management in wireless networking, 2005.Google ScholarGoogle Scholar
  21. vCC project. http://webee.technion.ac.il/ isaac/vcc/.Google ScholarGoogle Scholar
  22. Lampros Kalampoukas, Anujan Varma, and KK Ramakrishnan. Explicit window adaptation: A method to enhance TCP performance. IEEE Infocom, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  23. Shrikrishna Karandikar, Shivkumar Kalyanaraman, Prasad Bagal, and Bob Packer. TCP rate control. ACM SIGCOMM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. James Aweya, Michel Ouellette, and Delfin Montuno. A self-regulating TCP acknowledgment (ACK) pacing scheme. International Journal of Network Management, 12(3):145–163, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Huan-Yun Wei, Shih-Chiang Tsao, and Ying-Dar Lin. Assessing and improving TCP rate shaping over edge gateways. IEEE Trans. Comput., 53(3):259–275, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tackling bufferbloat in 3G/4G networks. IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for intrusion detection. NDSS, 2003.Google ScholarGoogle Scholar
  28. Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An architecture for secure active monitoring using virtualization. IEEE Symposium on Security and Privacy, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. VMsafe. https://www.vmware.com/company/news/releases/vmsafe_vmworld.Google ScholarGoogle Scholar
  30. Hari Balakrishnan, Srinivasan Seshan, and Randy H Katz. Improving reliable transport and handoff performance in cellular wireless networks. Wireless Networks, 1(4):469–481, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. RFC 5681. https://tools.ietf.org/html/rfc5681.Google ScholarGoogle Scholar
  32. Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP congestion control with a misbehaving receiver. ACM SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. RFC 6582. https://tools.ietf.org/html/rfc6582.Google ScholarGoogle Scholar
  34. Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKeown. Reproducible network experiments using container-based emulation. ACM CoNEXT, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sally Floyd. TCP and explicit congestion notification. ACM SIGCOMM, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mirja Kühlewind, Sebastian Neuner, and Brian Trammell. On the state of ECN and TCP options on the Internet. International Conference on Passive and Active Measurement, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yin Zhang and Lili Qiu. Understanding the end-to-end performance impact of RED in a heterogeneous environment. Technical report, Cornell, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. VMware vSphere DVFilter. https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html.Google ScholarGoogle Scholar
  39. Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Bjorn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin Vahdat. BwE: Flexible, hierarchical bandwidth allocation for WAN distributed computing. ACM SIGCOMM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Microsoft Hyper-V Extensible Switch. https://msdn.microsoft.com/en-us/library/windows/hardware/jj673961%28v=vs.85%29.aspx.Google ScholarGoogle Scholar
  41. Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter, and Amin Vahdat. Senic: Scalable NIC for end-host rate limiting. USENIX NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Radhika Niranjan Mysore, George Porter, and Amin Vahdat. FasTrak: enabling express lanes in multi-tenant data centers. ACM CoNEXT, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jeffrey C Mogul, Jayaram Mudigonda, Jose Renato Santos, and Yoshio Turner. The NIC is the hypervisor: bare-metal guests in IaaS clouds. 2013.Google ScholarGoogle Scholar
  44. Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia Ratnasamy. SoftNIC: A software NIC to augment hardware. Technical Report UCB/EECS-2015-155, UC Berkeley, 2015.Google ScholarGoogle Scholar
  45. Stephen Kent and Karen Seo. Security Architecture for the Internet Protocol. RFC 4301, RFC Editor, December 2005.Google ScholarGoogle Scholar
  46. Andrea Bittau, Michael Hamburg, Mark Handley, David Mazières, and Dan Boneh. The case for ubiquitous transport-level encryption. USENIX Security, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Keqiang He, Eric Rozner, Agarwal Kanak, Yu Gu, Wes Felter, John Carter, and Aditya Akella. AC/DC TCP: Virtual congestion control enforcement for datacenter networks. ACM SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. F5 Networks. Optimize WAN and LAN application performance with TCP Express. 2007.Google ScholarGoogle Scholar
  49. Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards predictable datacenter networks. ACM SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang. Secondnet: a data center network virtualization architecture with bandwidth guarantees. ACM CoNEXT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas Saha. Sharing the data center network. USENIX NSDI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Vimalkumar Jeyakumar, Mohammad Alizadeh, David Changhoon Kim, and Albert Greenberg. EyeQ: Practical network performance isolation at the edge. USENIX NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio Turner, and Jose Renato Santos. Elasticswitch: Practical work-conserving bandwidth guarantees for cloud computing. ACM SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Gautam Kumar, Srikanth Kandula, Peter Bodik, and Ishai Menache. Virtualizing traffic shapers for practical resource allocation. USENIX HotCloud, 2013.Google ScholarGoogle Scholar

Index Terms

  1. Virtualized Congestion Control

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGCOMM '16: Proceedings of the 2016 ACM SIGCOMM Conference
            August 2016
            645 pages
            ISBN:9781450341936
            DOI:10.1145/2934872

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 22 August 2016

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            SIGCOMM '16 Paper Acceptance Rate39of231submissions,17%Overall Acceptance Rate554of3,547submissions,16%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader