skip to main content
research-article

Guest Column: Proof Complexity and Beyond

Published:03 June 2016Publication History
Skip Abstract Section

Abstract

This essay is a highly personal and biased account of some main concepts and several research directions in modern propositional proof complexity. Special attention will be paid to connections with other disciplines.

References

  1. M. Alekhnovich. Lower bounds for k-DNF resolution on random 3-CNFs. Computational Complexity, 20(4):597--614, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alekhnovich, S. Arora, and I. Tourlakis. Toward strong nonapproximability results in the Lovász-Schrijver hierarchy. Computational Complexity, 20(4):615--648, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Space complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184--1211, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Pseudorandom generators in propositional proof complexity. SIAM Journal on Computing, 34(1):67--88, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Alekhnovich and A. Razborov. Lower bounds for the polynomial calculus: non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18--35, 2003.Google ScholarGoogle Scholar
  6. M. Alekhnovich and A. Razborov. Resolution is not automatizable unless W{P} is tractable. SIAM Journal on Computing, 38(4):1347--1363, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Arora and B. Barak. Computational Complexity: a Modern Approach. Cambridge University Press, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Barak, S. Hopkins, J. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. Technical Report TR16-058, Electronic Colloquium on Computational Complexity, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. Barak and D. Steurer. Sum-of-squares proofs and the quest toward optimal algorithms. In Proceedings of International Congress of Mathematicians (ICM), volume IV, pages 509--533, 2014.Google ScholarGoogle Scholar
  10. P. Beame, T. Huynh, and T. Pitassi. Hardness amplification in proof complexity. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing,, pages 87--96, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Beame and S. Riis. More on the relative strength of counting principles. In P. Beame and S. Buss, editors, Proof Complexity and Feasible Arithmetics: DIMACS workshop, April 21-24, 1996, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 39, pages 13--35. American Math. Soc., 1997.Google ScholarGoogle Scholar
  12. E. Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Hebrew University, 2001.Google ScholarGoogle Scholar
  13. E. Ben-Sasson. Hard examples for bounded depth Frege. In Proceedings of the 34th ACM Symposium on the Theory of Computing, pages 563--572, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple. Journal of the ACM, 48(2):149--169, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. O. Beyersdorff, N. Galesi, M. Lauria, and A. Razborov. Parameterized bounded-depth Frege is not optimal. ACM Transactions on Computation Theory, 7:article 7, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. I. Bonacina, N. Galesi, and N. Thapen. Total space in resolution. In Proceedings of the 55th IEEE Symposium on Foundations of Computer Science, pages 641--650, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi. Rank bounds and integrality gaps for cutting planes procedures. Theory of Computing, 2:65--90, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Buss, D. Grigoriev, R. Impagliazzo, and T. Pitassi. Linear gaps between degrees for the Polynomial Calculus modulo distinct primes. Journal of Computer and System Sciences, 62:267--289, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.Google ScholarGoogle Scholar
  20. M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the 28th ACM STOC, pages 174--183, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. A. Cook and A. R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44(1):36--50, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Ding, A. Sly, and N. Sun. Proof of the satis ability conjecture for large k. Technical Report 1411.0650{math.PR}, arXiv e-print, 2014.Google ScholarGoogle Scholar
  24. J. L. Esteban and J. Torán. Space bounds for resolution. Information and Computation, 171(1):84--97, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. U. Feige. Relations between average case complexity and approximation complexity. In Proceedings of the 34th ACM Symposium on the Theory of Computing, pages 534--543, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. N. Galesi and M. Lauria. On the automatizability of polynomial calculus. Theory of Computing Systems, 47(2):491--506, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Grigoriev. Linear lower bounds on degrees of Postivestellensatz calculus proofs for the parity. Theoretical Computer Science, 259:613--622, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. Yu. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semi-algebraic proofs. Moscow Mathematical Journal, 2(4):647--679, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Grochow and T. Pitassi. Circuit complexity, proof complexity, and polynomial identity testing. In Proceedings of the 55th IEEE Symposium on Foundations of Computer Science, pages 110--119, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Jukna. Boolean Function Complexity: Advances and frontiers. Springer-Verlag, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Kauers, R. O'Donnell, Li-Yang Tan, and Y. Zhou. Hypercontractive inequalities via SOS, and the Frankl-Rödl graph. Technical Report arXiv:1212.5324v3 {cs.CC}, arXiv e-print, 2012. To appear in Discrete Analysis.Google ScholarGoogle Scholar
  32. J. Krajíček. Bounded arithmetic, propositional logic and complexity theory. Cambridge University Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Krajíček. Tautologies from pseudo-random generators. Bulletin of Symbolic Logic, 7(2):197--212, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Krajíček. Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds. Journal of Symbolic Logic, 69(1):265--286, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. Krajíček. Forcing with Random Variables and Proof Complexity, LMS Lecture Notes Series 382. Cambridge University Press, 2011.Google ScholarGoogle Scholar
  36. J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. Journal of Symbolic Logic, 54(3):1063--1079, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Krajíček and P. Pudlák. Some consequences of cryptographical conjectures for S1/2 and EF. Information and Computation, 142:82--94, 1998. ACM Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Krajíček, P. Pudlák, and A. R. Woods. Exponential lower bounds to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms, 7(1):15--39, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite programming relaxations. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages 567--576, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Buss M. Bonet and T. Pitassi. Are there hard examples for Frege systems. In Feasible Mathematics, Volume II, pages 30--56. Birkhauser, 1994.Google ScholarGoogle Scholar
  41. J. Nordström. Pebble games, proof complexity and time-space trade-offs. Logical Methods in Computer Science, 9:1--63, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Nordström. On the interplay between proof complexity and SAT solving. ACM SIGLOG News, 2(3):19--44, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds for the pigeonhole principle. Computational Complexity, 3:97--140, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Pitassi, B. Rossman, R. A. Servedio, and Li-Yang Tan. Poly-logarithmic Frege depth lower bounds via an expander switching lemma. To appear in STOC 2016, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computations. Journal of Symbolic Logic, 62(3):981--998, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  46. P. Pudlák. On the complexity of propositional calculus. In Sets and Proofs, Invited papers from Logic Colloquium'97, pages 197--218. Cambridge University Press, 1999.Google ScholarGoogle Scholar
  47. P. Raghavendra and D. Steurer. Graph expansion and the Unique Games Conjecture. In Proceedings of the 42nd ACM Symposium on the Theory of Computing, pages 755--764, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Razborov. Bounded Arithmetic and lower bounds in Boolean complexity. In P. Clote and J. Remmel, editors, Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13, pages 344--386. Birkhaüser, 1995.Google ScholarGoogle Scholar
  49. A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity, 7:291--324, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. A. Razborov. Proof complexity of pigeonhole principles. In Proceedings of the 5th DLT, Lecture Notes in Computer Science, 2295, pages 100--116, New York/Berlin, 2002. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution. Annals of Mathematics, 181(3):415--472, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  52. A. Razborov. On the width of semi-algebraic proofs and algorithms. Technical Report TR16- 010, Electronic Colloquium on Computational Complexity, 2016.Google ScholarGoogle Scholar
  53. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24--35, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. R. A. Reckhow. On the lengths of proofs in the propositional calculus. Technical Report 87, University of Toronto, 1976.Google ScholarGoogle Scholar
  55. G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pages 593--602, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the 41st ACM Symposium on the Theory of Computing, pages 303--312, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. Tulsiani. Lovász-Schrijver reformulation. In Wiley Encyclopedia of Operations Research & Management Science. 2011.Google ScholarGoogle Scholar

Index Terms

  1. Guest Column: Proof Complexity and Beyond
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM SIGACT News
            ACM SIGACT News  Volume 47, Issue 2
            June 2016
            83 pages
            ISSN:0163-5700
            DOI:10.1145/2951860
            Issue’s Table of Contents

            Copyright © 2016 Author

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 3 June 2016

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader