skip to main content
research-article
Open Access

Jump: virtual reality video

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

We present Jump, a practical system for capturing high resolution, omnidirectional stereo (ODS) video suitable for wide scale consumption in currently available virtual reality (VR) headsets. Our system consists of a video camera built using off-the-shelf components and a fully automatic stitching pipeline capable of capturing video content in the ODS format. We have discovered and analyzed the distortions inherent to ODS when used for VR display as well as those introduced by our capture method and show that they are small enough to make this approach suitable for capturing a wide variety of scenes. Our stitching algorithm produces robust results by reducing the problem to one of pairwise image interpolation followed by compositing. We introduce novel optical flow and compositing methods designed specifically for this task. Our algorithm is temporally coherent and efficient, is currently running at scale on a distributed computing platform, and is capable of processing hours of footage each day.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aydin, T. O., Stefanoski, N., Croci, S., Gross, M., and Smolic, A. 2014. Temporally coherent local tone mapping of hdr video. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. IJCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baran, I., Schmid, J., Siegrist, T., Gross, M., and Sumner, R. W. 2011. Mixed-order compositing for 3d paintings. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barron, J. T., and Poole, B. 2016. The fast bilateral solver. ECCV.Google ScholarGoogle Scholar
  5. Brox, T., and Malik, J. 2011. Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-viewpoint video of human actors. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe, H., Kirk, A., and Sullivan, S. 2015. High-quality streamable free-viewpoint video. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Couture, V., Langer, M. S., and Roy, S. 2010. Analysis of disparity distortions in omnistereoscopic displays. ACM Transactions on Applied Perception (TAP). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Couture, V., Langer, M. S., and Roy, S. 2011. Panoramic stereo video textures. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dodgson, N. A. 2004. Variation and extrema of human inter-pupillary distance. SPIE: Stereoscopic Displays and Applications, 3646.Google ScholarGoogle Scholar
  11. Gluckman, J., Nayar, S. K., and Thoresz, K. J. 1998. Real-time omnidirectional and panoramic stereo. Proc. of Image Understanding Workshop.Google ScholarGoogle Scholar
  12. Google, 2014. Google Cardboard. https://en.wikipedia.org/wiki/Google Cardboard.Google ScholarGoogle Scholar
  13. Gross, M., and Pfister, H. 2007. Point-Based Graphics. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hartley, R., and Zisserman, A. 2003. Multiple view geometry in computer vision. Cambridge university press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hasinoff, S. W., Sharlet, D., Geiss, R., Adams, A., Barron, J. T., Kainz, F., Chen, J., and Levoy, M. 2016. Burst photography for high dynamic range and low-light imaging on mobile cameras. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Horn, B. K. P., and Schunk, B. G. 1981. Determining optical flow. Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ishiguro, H., Yamamoto, M., and Tsuji, S. 1990. Omni-directional stereo for making global map. ICCV.Google ScholarGoogle Scholar
  18. Jarabo, A., Masia, B., Bousseau, A., Pellacini, F., and Gutierrez, D. 2014. How do people edit light fields? SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Koppal, S. J., Zitnick, C. L., Cohen, M. F., Kang, S. B., Ressler, B., and Colburn, A. 2010. A viewer-centric editor for 3d movies. Computer Graphics and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Krähenbühl, P., and Koltun, V. 2012. Efficient nonlocal regularization for optical flow. ECCV.Google ScholarGoogle Scholar
  21. Kroeger, T., Timofte, R., Dai, D., and Gool, L. J. V. 2016. Fast optical flow using dense inverse search. ECCV.Google ScholarGoogle Scholar
  22. Lang, M., Wang, O., Aydin, T., Smolic, A., and Gross, M. 2012. Practical temporal consistency for image-based graphics applications. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Levoy, M., and Hanrahan, P. 1996. Light field rendering. CGIT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lewis, J. 1995. Fast normalized cross-correlation. Vision interface.Google ScholarGoogle Scholar
  25. Liu, C., Yuen, J., and Torralba, A. 2011. Sift flow: Dense correspondence across scenes and its applications. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. IJCAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Meka, A., Zollhoefer, M., Richardt, C., and Theobalt, C. 2016. Live intrinsic video. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Menze, M., and Geiger, A. 2015. Object scene flow for autonomous vehicles. CVPR.Google ScholarGoogle Scholar
  29. Peleg, S., Ben-Ezra, M., and Pritch, Y. 2001. Omnistereo: Panoramic stereo imaging. TPAMI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Porter, T., and Duff, T. 1984. Compositing digital images. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pulli, K., Hoppe, H., Cohen, M., Shapiro, L., Duchamp, T., and Stuetzle, W. 1997. View-based rendering: Visualizing real objects from scanned range and color data. Proc. Eurographics Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Qin, D., Takamatsu, M., and Nakashima, Y. 2004. Measurement for the panum's fusional area in retinal fovea using a three-dimension display device. Journal of Light & Visual Environment.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Ama-rasinghe, S., and Durand, F. 2012. Decoupling algorithms from schedules for easy optimization of image processing pipelines. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rav-Acha, A., Engel, G., and Peleg, S. 2008. Minimal aspect distortion (mad) mosaicing of long scenes. IJCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid, C. 2015. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. CVPR.Google ScholarGoogle Scholar
  36. Richardt, C., Pritch, Y., Zimmer, H., and Sorkine-Hornung, A. 2013. Megastereo: Constructing high-resolution stereo panoramas. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Samsung, 2015. Samsung Gear VR. https://en.wikipedia.org/wiki/Samsung_Gear_VR.Google ScholarGoogle Scholar
  38. Shimamura, J., Yokoya, N., Takemura, H., and Yamazawa, K. 2000. Construction of an immersive mixed environment using an omnidirectional stereo image sensor. Workshop on Omnidirectional Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shum, H.-Y., and He, L.-W. 1999. Rendering with concentric mosaics. CGIT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Smolic, A. 2011. 3d video and free viewpoint videofrom capture to display. Pattern recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tanaka, K., and Tachi, S. 2005. Tornado: Omnistereo video imaging with rotating optics. TVCG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weissig, C., Schreer, O., Eisert, P., and Kauff, P. 2012. The ultimate immersive experience: panoramic 3D video acquisition. Springer.Google ScholarGoogle Scholar
  43. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yang, J. C., Everett, M., Buehler, C., and McMillan, L. 2002. A real-time distributed light field camera. Rendering Techniques 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. TOG. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zwicker, M., Pfister, H., van Baar, J., and Gross, M. 2001. Surface splatting. CGIT. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Jump: virtual reality video

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 Owner/Author

        This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader