skip to main content
10.1145/2984511.2984513acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Exploring the Design Space for Energy-Harvesting Situated Displays

Published:16 October 2016Publication History

ABSTRACT

We explore the design space of energy-neutral situated displays, which give physical presence to digital information. We investigate three central dimensions: energy sources, display technologies, and wireless communications. Based on the power implications from our analysis, we present a thin, wireless, photovoltaic-powered display that is quick and easy to deploy and capable of indefinite operation in indoor lighting conditions. The display uses a low-resolution e-paper architecture, which is 35 times more energy-efficient than smaller-sized high-resolution displays. We present a detailed analysis on power consumption, photovoltaic energy harvesting performance, and a detailed comparison to other display-driving architectures. Depending on the ambient lighting, the display can trigger an update every 1 -- 25 minutes and communicate to a PC or smartphone via Bluetooth Low-Energy.

Skip Supplemental Material Section

Supplemental Material

uist1189-file3.mp4

mp4

27.4 MB

p41-grosse-puppendahl.mp4

mp4

79.9 MB

References

  1. AllAboutWindowsPhone. Nokia Glance Screen and display settings on the Nokia Lumia 925, 2013. http://allaboutwindowsphone.com/features/item/ 17736 Nokia Glance Screen and displa.php (date accessed: 2016/04/12).Google ScholarGoogle Scholar
  2. BBC. London bus stops embrace e-paper, 2015. http://www.bbc.co.uk/news/technology-35162689 (date accessed: 2016/04/12).Google ScholarGoogle Scholar
  3. Comiskey, B., Albert, J. D., Yoshizawa, H., Jacobson, J., by Michaels, C., and Others. An electrophoretic ink for all-printed reflective electronic displays. Nature 394 (1998), 253--255. Google ScholarGoogle ScholarCross RefCross Ref
  4. Dementyev, A., Gummeson, J., Thrasher, D., Parks, A., Ganesan, D., Smith, J. R., and Sample, A. P. Wirelessly powered bistable display tags. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp '13, ACM (2013), 383--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dementyev, A., Hodges, S., Taylor, S., and Smith, J. Power consumption analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic sleep scenario. In Wireless Symposium (IWS), 2013 IEEE International (April 2013), 1--4. Google ScholarGoogle ScholarCross RefCross Ref
  6. E Ink. E Ink Aurora Imaging Film, 2013. http://www.eink.com/sell sheets/aurora spec sheet sept2013.pdf (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  7. E Ink. E Ink History, 2016. http://eink.com/history.html (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  8. Elliot, K., Neustaedter, C., and Greenberg, S. Time, ownership and awareness: The value of contextual locations in the home. In Proceedings of Ubicomp 2005, Springer (2005), 251--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. FastCompany. Toshiba Unveils First Solar-Powered E-Reader, 2016. http://www.fastcompany.com/1711567 (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  10. Gainspan Inc. GS1500M Wi-Fi Module, 2014. http://www.alphamicro.net/media/412417/ gs1500m datasheet rev 1 4.pdf (date accessed: 2016/04/13).Google ScholarGoogle Scholar
  11. Green, K. Programming Sharp Memory LCDs. http://www.sharpmemorylcd.com/resources/ Programing Memory LCDs AppNote.pdf (date accessed: 2016/07/21).Google ScholarGoogle Scholar
  12. Japan Display Inc. Display Specification, 2015. http://www.j-display.com/english/news/2015/pdf/ 1.34inch en 20150511 V1.1.pdf (date accessed: 2016/04/13).Google ScholarGoogle Scholar
  13. Kappel, K., and Grechenig, T. "show-me": Water consumption at a glance to promote water conservation in the shower. In Proceedings of the 4th International Conference on Persuasive Technology, Persuasive '09, ACM (2009), 26:1--26:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kawsar, F., Vermeulen, J., Smith, K., Luyten, K., and Kortuem, G. Exploring the Design Space for Situated Glyphs to Support Dynamic Work Environments. Springer Berlin Heidelberg, 2011, 70--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kellogg, B., Talla, V., Gollakota, S., and Smith, J. R. Passive wi-fi: Bringing low power to wi-fi transmissions. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI, USENIX Association (Mar. 2016), 151--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kent Displays. 1/4 VGA Cholesteric Display Module with SPITM-Compatible Interface, 2016. https://www.sparkfun.com/datasheets/LCD/LCD09559--25085b 320x240 SPI datasheet.pdf (date accessed: 2016/07/21).Google ScholarGoogle Scholar
  17. Kim, S. W., Kim, M. C., Park, S. H., Jin, Y. K., and Choi, W. S. Gate reminder: A design case of a smart reminder. In Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS '04, ACM (2004), 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kuznetsov, S., and Paulos, E. Upstream: Motivating water conservation with low-cost water flow sensing and persuasive displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '10, ACM (2010), 1851--1860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, Y., Kim, G., Bang, S., Kim, Y., Lee, I., Dutta, P., Sylvester, D., and Blaauw, D. A modular 1mm3 die-stacked sensing platform with optical communication and multi-modal energy harvesting. In 2012 IEEE International Solid-State Circuits Conference (Feb 2012), 402--404. Google ScholarGoogle ScholarCross RefCross Ref
  20. Nehani, J., Brunelli, D., Magno, M., Sigrist, L., and Benini, L. An energy neutral wearable camera with epd display. In Proceedings of the 2015 Workshop on Wearable Systems and Applications, WearSys '15, ACM (2015), 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21. OED Technologies. ComFlec O-Paper Imaging Film for Segmented Displays, 2016. http://www.oedtech.com/ (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  22. O'Hara, K., Perry, M., and Churchill, E. Public and Situated Displays: Social and Interactional Aspects of Shared Display Technologies. Springer, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. O'Hara, K., Perry, M., and Lewis, S. Social coordination around a situated display appliance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '03, ACM (2003), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Oregon Scientific. +ECO Clima Control, 2009. http://www.oregonscientific.com/manual/RMR500ES.pdf (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  25. Paradiso, J. A., and Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing 4, 1 (Jan 2005), 18--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Parks, A. N., Kellogg, B., and Smith, J. R. Perpetual smart signage using ambient energy harvesting {poster abstract}. In ACM International Symposium on Pervasive Displays (2013).Google ScholarGoogle Scholar
  27. Parks, A. N., Zhao, Y., and Smith, J. R. A wireless sensing platform utilizing ambient rf energy. IEEE WiSNET., Austin TX (2013).Google ScholarGoogle Scholar
  28. Pedersen, E. R. People presence or room activity supporting peripheral awareness over distance. In Proceedings of CHI'98, ACM Press (1998), 283--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pervasive Displays. 2.7 Low Power Aurora Mb (V231), 2016. http://www.pervasivedisplays.com/ LiteratureRetrieve.aspx'ID=222072 (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  30. 30. Qualcomm. Qualcomm Mirasol, 2016. https://www.qualcomm.com/documents/ mirasol-imod-tech-overview (date accessed: 2016/07/22).Google ScholarGoogle Scholar
  31. 31. Roen, S. Solar powered portable calculator, Apr. 12 1977. US Patent 4,017,725.Google ScholarGoogle Scholar
  32. Schuss, C., and Rahkonen, T. Solar energy harvesting strategies for portable devices such as mobile phones. In 2013 14th Conference of Open Innovations Association (FRUCT) (Nov 2013), 132--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33. Senli, S. Ethernet energy harvesting. Master's thesis, KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS., 2012.Google ScholarGoogle Scholar
  34. 34. Silicon Labs Inc. CP2400 Segment LCD Driver, 2010. http://www.silabs.com/Support(date accessed: 2016/04/13).Google ScholarGoogle Scholar
  35. 35. SUNPARTNER Technologies. Wysips Reflective, 2016. http://sunpartnertechnologies.com/mobile-devices/ (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  36. Sweeney, D., Chen, N., Hodges, S., and Grosse-Puppendahl, T. Displays as a material: A route to making displays more pervasive. IEEE Pervasive Computing 15, 3 (July 2016), 77--82. Google ScholarGoogle ScholarCross RefCross Ref
  37. 37. Talla, V., Kellogg, B., Ransford, B., Naderiparizi, S., Gollakota, S., and Smith, J. R. Powering the next billion devices with wi-fi. CoRR abs/1505.06815 (2015).Google ScholarGoogle Scholar
  38. Texas Instruments. BQ25570 Nano Power Boost Charger and Buck Converter for Energy Harvester Powered Applications, 2016. http://www.ti.com/product/bq25570 (date accessed: 2016/07/21).Google ScholarGoogle Scholar
  39. TI Inc. CC3100MOD SimpleLink, 2014. http://www.ti.com/lit/ds/symlink/cc3100mod.pdf (date accessed: 2016/04/13).Google ScholarGoogle Scholar
  40. Ubiquitous Energy. clearview power Technology, 2016. http://ubiquitous.energy/ (date accessed: 2016/04/04).Google ScholarGoogle Scholar
  41. Warneke, B. A., Scott, M. D., Leibowitz, B. S., Zhou, L., Bellew, C. L., Chediak, J. A., Kahn, J. M., Boser, B. E., and Pister, K. S. J. An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks. In Sensors, 2002. Proceedings of IEEE, vol. 2 (2002), 1510--1515 vol.2. Google ScholarGoogle ScholarCross RefCross Ref
  42. Winstar Display Co. Ltd. 2.7-inch (diagonal) Memory LCD. http://www.sharpmemorylcd.com/2--7-inchmemory-lcd.html (date accessed: 2016/04/13).Google ScholarGoogle Scholar
  43. Zhao, Y., Smith, J. R., and Sample, A. Nfc-wisp: An open source software defined near field rfid sensing platform. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC'15 Adjunct, ACM (2015), 369--372. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Exploring the Design Space for Energy-Harvesting Situated Displays

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
        October 2016
        908 pages
        ISBN:9781450341899
        DOI:10.1145/2984511

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 October 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

        Upcoming Conference

        UIST '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader