skip to main content
10.1145/2987443.2987483acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
short-paper

Optical Layer Failures in a Large Backbone

Published:14 November 2016Publication History

ABSTRACT

We analyze optical layer outages in a large backbone, using data for over a year from thousands of optical channels carrying live IP layer traffic. Our analysis uncovers several findings that can help improve network management and routing. For instance, we find that optical links have a wide range of availabilities, which questions the common assumption in fault-tolerant routing designs that all links have equal failure probabilities. We also find that by monitoring changes in optical signal quality (not visible at IP layer), we can better predict (probabilistically) future outages. Our results suggest that backbone traffic engineering strategies should consider current and past optical layer performance and route computation should be based on the outage-risk profile of the underlying optical links.

References

  1. M. Bjorklund. YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF). RFC 6020, Oct. 2010.Google ScholarGoogle Scholar
  2. H. Bulow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Kuppers, and W. Weiershausen. Measurement of the maximum speed of PMD fluctuation in installed field fiber. Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99, 2:83--85, Feb 1999.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike, J. W. Gannett, J. G. Klincewicz, G. Li, R. A. Skoog, J. Strand, A. V. Lehmen, and D. Xu. Network design and architectures for highly dynamic next-generation IP-Over-Optical long distance networks. Journal of Lightwave Technology, 27(12):1878--1890, June 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Durairajan, P. Barford, J. Sommers, and W. Willinger. Intertubes: A study of the US long-haul fiber-optic infrastructure. SIGCOMM'15, 45(4):565--578, Aug. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. J. Feuerstein. Field measurements of deployed fiber. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, page NThC4, 2005.Google ScholarGoogle Scholar
  6. M. Filer, J. Gaudette, M. Ghobadi, R. Mahajan, T. Issenhuth, B. Klinkers, and J. Cox. Elastic optical networking in the microsoft cloud. Journal of Optical Communications and Networking, 8(7):A45--A54, Jul 2016.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. A. Freedman, T. Marian, J. H. Lee, K. Birman, H. Weatherspoon, and C. Xu. Exact temporal characterization of 10 Gbps optical wide-area network. IMC'10, pages 342--355, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Ghobadi, J. Gaudette, R. Mahajan, A. Phanishayee, B. Klinkers, and D. Kilper. Evaluation of elastic modulation gains in Microsoft's optical backbone in North America. Optical Fiber Communication Conference, page M2J.2, 2016.Google ScholarGoogle Scholar
  9. R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat. Evolve or die: High-availability design principles drawn from Google's network infrastructure. SIGCOMM'16, pages 58--72, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer. Achieving high utilization with Software-driven WAN. SIGCOMM'13, pages 15--26, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience with a globally-deployed software defined wan. SIGCOMM'13, pages 3--14, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Ji, J. H. Lee, and Y. C. Chung. System outage probability due to dispersion variation caused by seasonal and regional temperature variations. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, page OME79, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  13. I. P. Kaminow, T. Li, and A. E. Willner. Optical Fiber Telecommunications. Academic Press, Burlington, fifth edition, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Karlsson, J. Brentel, and P. Andrekson. Long-term measurement of PMD and polarization drift in installed fibers. Journal of Lightwave Technology, 18(7):941--951, July 2000.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP fault localization via risk modeling. NSDI'05, pages 57--70, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. Li, D. Wang, R. Doverspike, C. Kalmanek, and J. Yates. Economic analysis of IP/optical network architectures. page FH5, 2004.Google ScholarGoogle Scholar
  17. J. C. Li, K. Hinton, P. M. Farrell, and S. D. Dods. Optical impairment outage computation. Opt. Express, 16(14):10529--10534, Jul 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic engineering with forward fault correction. SIGCOMM'14, 44(4):527--538, Aug. 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Marian, D. Freedman, K. Birman, and H. Weatherspoon. Empirical characterization of uncongested optical lambda networks and 10GbE commodity endpoints. IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 575--584, June 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. Characterization of failures in an IP backbone. 4:2307--2317, March 2004.Google ScholarGoogle Scholar
  21. T. Mizuochi. Recent progress in forward error correction and its interplay with transmission impairments. IEEE Journal of Selected Topics in Quantum Electronics, 12(4):544--554, July 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. Y. Tremblay. Circuit and method of testing for silent faults in a bi-directional optical communication system, 1998. US Patent 5,781,318.Google ScholarGoogle Scholar
  23. B. Vidalenc, L. Ciavaglia, L. Noirie, and E. Renault. Dynamic risk-aware routing for OSPF networks. pages 226--234, May 2013.Google ScholarGoogle Scholar
  24. S. Woodward, L. Nelson, M. Feuer, X. Zhou, P. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O'Sullivan. Characterization of real-time PMD and chromatic dispersion monitoring in a high-pmd 46-gb/s transmission system. IEEE Photonics Technology Letters, 20(24):2048--2050, Dec 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. Woodward, L. Nelson, C. Schneider, L. Knox, M. O'Sullivan, C. Laperle, M. Moyer, and S. Foo. Long-term observation of PMD and SOP on installed fiber routes. IEEE Photonics Technology Letters, 26(3):213--216, Feb 2014.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Zhu, K. Zhu, H. Zang, and B. Mukherjee. Cost-effective WDM backbone network design with OXCs of different bandwidth granularities. IEEE Journal on Selected Areas in Communications, 21(9):1452--1466, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optical Layer Failures in a Large Backbone

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            IMC '16: Proceedings of the 2016 Internet Measurement Conference
            November 2016
            570 pages
            ISBN:9781450345262
            DOI:10.1145/2987443

            Copyright © 2016 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 14 November 2016

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • short-paper

            Acceptance Rates

            IMC '16 Paper Acceptance Rate48of184submissions,26%Overall Acceptance Rate277of1,083submissions,26%

            Upcoming Conference

            IMC '24
            ACM Internet Measurement Conference
            November 4 - 6, 2024
            Madrid , AA , Spain

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader