skip to main content
research-article

Parametrised Complexity of Satisfiability in Temporal Logic

Published:20 January 2017Publication History
Skip Abstract Section

Abstract

We apply the concept of formula treewidth and pathwidth to computation tree logic, linear temporal logic, and the full branching time logic. Several representations of formulas as graphlike structures are discussed, and corresponding notions of treewidth and pathwidth are introduced. As an application for such structures, we present a classification in terms of parametrised complexity of the satisfiability problem, where we make use of Courcelle’s famous theorem for recognition of certain classes of structures. Our classification shows a dichotomy between W[1]-hard and fixed-parameter tractable operator fragments almost independently of the chosen graph representation. The only fragments that are proven to be fixed-parameter tractable (FPT) are those that are restricted to the X operator. By investigating Boolean operator fragments in the sense of Post’s lattice, we achieve the same complexity as in the unrestricted case if the set of available Boolean functions can express the function “negation of the implication.” Conversely, we show containment in FPT for almost all other clones.

References

  1. E. Allen Emerson. 1990. Temporal and modal logic. In Handbook of Theoretical Computer Science (Vol. B), Jan van Leeuwen (Ed.). MIT Press, Cambridge, MA, 995--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Allen Emerson and E. M. Clarke. 1981. Design and synthesis of synchronisation skeletons using branching time temporal logic. In Logic of Programs (Lecture Notes in Computer Science), Vol. 131. Springer Verlag, Berlin, 52--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. E. Allen Emerson and J. Y. Halpern. 1985. Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. System Sci. 30, 1 (1985), 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor, and H. Vollmer. 2010. The complexity of problems for quantified constraints. Theor. Comput. Syst. 47 (2010), 454--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. O. Beyersdorff, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and H. Vollmer. 2011. Model checking CTL is almost always inherently sequential. Logic. Methods Comput. Sci. 7, 2 (2011). Google ScholarGoogle ScholarCross RefCross Ref
  6. O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. 2010. The complexity of reasoning for fragments of default logic. J. Logic Comput. (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Blackburn, M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Böhler, N. Creignou, M. Galota, S. Reith, H. Schnoor, and H. Vollmer. 2012. Complexity classifications for different equivalence and audit problems for Boolean circuits. Logic. Methods Comput. Sci. 8, 3:27 (2012), 1--25.Google ScholarGoogle Scholar
  9. C. Chekuri and A. Rajaraman. 1997. Conjunctive query containment revisited. In Database Theory—ICDT’97. Vol. 1186. Springer, Berlin, 56--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Courcelle and J. Engelfriet. 2012. Graph Structure and Monadic Second-order Logic, a Language Theoretic Approach. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Creignou, A. Meier, H. Vollmer, and M. Thomas. 2012. The complexity of reasoning for fragments of autoepistemic logic. ACM Trans. Comput. Logic 13, 2 (April 2012), 1--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Demri and P. Schnoebelen. 2002. The complexity of propositional linear temporal logics in simple cases. Inform. Comput. 174, 1 (April 2002), 84--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Elberfeld, A. Jakoby, and T. Tantau. 2010. Logspace versions of the theorems of Bodlaender and Courcelle. In Proc. 51th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. J. Fischer and R. E. Ladner. 1979. Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18, 2 (1979), 194--211. Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Haim Gaifman. 1982. On local and non-local properties. In Herbrand Symposium, Logic Colloquium’81. North-Holland, 105--135.Google ScholarGoogle ScholarCross RefCross Ref
  18. G. Gottlob, R. Pichler, and F. Wei. 2010. Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174, 1 (2010), 105--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Y. Halpern. 1995. The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artif. Intell. 75 (1995), 361--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Hemaspaandra, H. Schnorr, and I. Schnoor. 2010. Generalized modal satisfiability. J. Comput. Syst. Sci. 76 (2010), 561--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. G. Kolaitis and M. Y. Vardi. 2000. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci. 61, 2 (2000), 302--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Kripke. 1963. Semantical considerations on modal logic. In Acta Philosophica Fennica, Vol. 16. 84--94.Google ScholarGoogle Scholar
  23. H. Lewis. 1979. Satisfiability problems for propositional calculi. Math. Syst. Theor. 13 (1979), 45--53. Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Lück. 2015. Quirky quantifiers: Optimal models and complexity of computation tree logic. CoRR abs/1510.08786 (2015).Google ScholarGoogle Scholar
  25. M. Lück, A. Meier, and I. Schindler. 2015. Parameterized complexity of CTL. In Language and Automata Theory and Applications. Lecture Notes in Computer Science, Vol. 8977. Springer, 549--560. Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiss. 2010. The complexity of satisfiability for fragments of hybrid logic -- Part I. J. Appl. Logic 8, 4 (2010), 409--421. Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. 2009. The complexity of satisfiability for fragments of CTL and CTL*. Int. J. Found. Comput. Sci. 20, 05 (2009), 901--918. Erratum See Meier et al. {2015}.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. 2015. Erratum: The complexity of satisfiability for fragments of CTL and CTL*. Int. J. Found. Comput. Sci. 26, 08 (2015), 1189--1190. Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Meier, J. Schmidt, M. Thomas, and H. Vollmer. 2012. On the parameterized complexity of default logic and autoepistemic logic. In Proc. 6th International Conference on Language and Automata Theory and Applications (LATA)(LNCS), Vol. 7183. 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Meier and T. Schneider. 2013. Generalized satisfiability for the description logic ALC. Theor. Comput. Sci. 505, 0 (2013), 55--73. Theory and Applications of Models of Computation 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Pippenger. 1997. Theories of Computability. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Pnueli. 1977. The temporal logic of programs. In Proc. 18th Symposium on Foundations of Computer Science. IEEE Computer Society Press, 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. Post. 1941. The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5 (1941), 1--122.Google ScholarGoogle Scholar
  34. M. Praveen. 2013. Does treewidth help in modal satisfiability? ACM Trans. Comput. Logic 14, 3 (2013), 18:1--18:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. N. Prior. 1957. Time and Modality. Clarendon Press, Oxford.Google ScholarGoogle Scholar
  36. M. Samer and S. Szeider. 2006. A fixed-parameter algorithm for #SAT with parameter incidence treewidth. CoRR abs/cs/0610174 (2006).Google ScholarGoogle Scholar
  37. M. Samer and S. Szeider. 2010. Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76, 2 (2010), 103--114. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Parametrised Complexity of Satisfiability in Temporal Logic

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computational Logic
        ACM Transactions on Computational Logic  Volume 18, Issue 1
        January 2017
        277 pages
        ISSN:1529-3785
        EISSN:1557-945X
        DOI:10.1145/3041822
        • Editor:
        • Orna Kupferman
        Issue’s Table of Contents

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 January 2017
        • Accepted: 1 September 2016
        • Revised: 1 July 2016
        • Received: 1 August 2015
        Published in tocl Volume 18, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader