skip to main content
article
Free Access

Complexity estimates depending on condition and round-off error

Published:01 January 1999Publication History
Skip Abstract Section

Abstract

This paper has two agendas. One is to develop the foundations of round-off in computation. The other is to describe an algorithm for deciding feasibility for polynomial systems of equations and inequalities together with its complexity analysis and its round-off properties. Each role reinforces the other.

References

  1. ALLGOWER, E., AND GEORG, K. 1990. Numerical Continuation Methods. Springer-Verlag, New York.]] Google ScholarGoogle Scholar
  2. BALCAZAR, J., D{AZ, J., AND GABARRO, J. 1988. Structural complexity I. In EATCS Monographs on Theoretical Computer Science, vol. 11. Springer-Verlag, New York.]] Google ScholarGoogle Scholar
  3. BASU, S., POLLACK, R., AND ROY, M.-F. 1994. On the combinatorial and algebraic complexity of quantifier elimination. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 632-641.]]Google ScholarGoogle Scholar
  4. BLUM, L., CUCKER, F., SHUB, M., AND SHALE, S. 1998. Complexity and Real Computation. Springer-Verlag, New York.]] Google ScholarGoogle Scholar
  5. BLUM, L., SHUB, M., AND SHALE, S. 1989. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull, AMS 21, 1-46.]]Google ScholarGoogle Scholar
  6. CAMPBELL, S., AND MEYER, C. 1979. Generalized Inverses of Linear Transformations. Pitman, London.]]Google ScholarGoogle Scholar
  7. COLLINS, G. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposi- tion. In Lecture Notes in Computer Science, vol. 33. Springer-Verlag, New York, pp. 134-183.]] Google ScholarGoogle Scholar
  8. CUCKER, F., MONTAI#A, J., AND PARDO, L. 1995. Models for parallel computations with real numbers. In Number Theoretic and Algebraic Methods in Computer Science, I. Shpardinski, ed. World Scientific, River Edge, N.J., pp. 53-63.]]Google ScholarGoogle Scholar
  9. DEDmU, J.-P. 1996. Approximate solutions of numerical problems, condition number analysis and condition number theorem. In The Mathematics of Numerical Analysis, J. Renegar, M. Shub, and S. Smale, eds. Lectures in Applied Mathematics, vol. 32. American Mathematical Society, Providence, R.I., pp. 263-283.]]Google ScholarGoogle Scholar
  10. DEDmU, J.-P., AND SHUB, M. 1997. Multihomogeneous Newton methods. Preprint.]]Google ScholarGoogle Scholar
  11. GRAHAM, R., KNUTH, D., AND PATASHNIK, O. 1989. Concrete Mathematics. Addison-Wesley, Reading, Mass.]] Google ScholarGoogle Scholar
  12. GRIGORmV, D., AND VOROBJOV, N. 1988. Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5, 37-64.]] Google ScholarGoogle Scholar
  13. HEINTZ, J., ROY, M.-F., AND SOLERNO, P. 1990. Sur la complexit6 du principe de Tarski- Seidenberg. Bull. Soc. Math. France 118, 101-126.]]Google ScholarGoogle Scholar
  14. HIGHAM, N. 1996. Accuracy and Stability of Numerical Algorithms. SIAM, New York.]] Google ScholarGoogle Scholar
  15. MEGIDDO, N. 1993. A general NP-completeness theorem. In From Topology to Computation: Proceedings of the Smalefest, M. Hirsch, J. Marsden, and M. Shub, eds. Springer-Verlag, New York, pp. 432-442.]]Google ScholarGoogle Scholar
  16. PAPADIMITRIOU, C. 1994. Computational Complexity. Addison-Wesley, Reading, Mass.]]Google ScholarGoogle Scholar
  17. RENEGAR, J. 1992. On the computational complexity and geometry of the first-order theory of the reals. Part I. J. Symb. Comput. 13, 255-299.]] Google ScholarGoogle Scholar
  18. SNUB, M. 1994. Mysteries of mathematics and computation. Math. Int. 16, 10-15.]]Google ScholarGoogle Scholar
  19. SHUB, M., AND SHALE, S. 1993a. Complexity of Bezout's theorem I: Geometric aspects. J. AMS. 6, 459-501.]]Google ScholarGoogle Scholar
  20. SHUB, M., AND SHALE, S. 1993b. Complexity of Bezout's theorem II: Volumes and probabilities. In Computational Algebraic Geometry, F. Eyssette and A. Galligo, eds. Progress in Mathematics, vol. 109. Birkhfiuser, Boston, Mass., pp. 267-285.]]Google ScholarGoogle Scholar
  21. SHUB, M., AND SHALE, S. 1993c. Complexity of Bezout's theorem III: Condition number and packing. J. Complex. 9, 4-14.]] Google ScholarGoogle Scholar
  22. SHUB, M., AND SHALE, S. 1994. Complexity of Bezout's theorem V: Polynomial time. Theoret. Comput. Sci. 133, 141-164.]] Google ScholarGoogle Scholar
  23. SHUB, M., AND SHALE, S. 1996. Complexity of Bezout's theorem IV: Probability of success; extensions. SIAM J. Numer. Anal. 33, 128-148.]] Google ScholarGoogle Scholar
  24. SHALE, S. 1986. Newton's method estimates from data at one point. In The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, R. Ewing, K. Gross, and C. Martin, eds. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  25. SHALE, S. 1997. Complexity theory and numerical analysis. In Acta Numerica. Cambridge University Press, Cambridge, England, pp. 523-551.]]Google ScholarGoogle Scholar
  26. TARSKI, A. 1951. A Decision Method for Elementary Algebra and Geometry. University of California Press.]]Google ScholarGoogle Scholar
  27. TREFETHEN, L., AND BAU, D. III 1997. Numerical Linear Algebra. SIAM, Philadelphia, Pa.]]Google ScholarGoogle Scholar
  28. TURING, A. 1948. Rounding-off errors in matrix processes. Quart. J. Mech. Appl. Math. 1, 287-308.]]Google ScholarGoogle Scholar
  29. VON NEUMANN, J., AND GOLDSTINE, H. 1947. Numerical inverting matrices of high order. Bull. AMS. 53, 1021-1099.]]Google ScholarGoogle Scholar
  30. VON NEUMANN, J., AND GOLDSTINE, U. 1951. Numerical inverting matrices of high order, II. Proc. AMS. 2, 188-202.]]Google ScholarGoogle Scholar
  31. WILKINSON, J. 1963. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, New Jersey.]] Google ScholarGoogle Scholar
  32. WILKINSON, J.1971. Modern error analysis. SIAM Rev. 13, 548-568.]]Google ScholarGoogle Scholar
  33. W/JTHRICH, H. 1976. Ein Entscheidungsverfahren ftir die Theorie der reell-abgeschlossenen K6rper. In Komplexitiit von Entscheidungsproblemen, E. Specker and V. Strassen, eds. Lecture Notes in Computer Science, vol. 43. Springer-Verlag, New York, pp. 138-162.]] Google ScholarGoogle Scholar

Index Terms

  1. Complexity estimates depending on condition and round-off error

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader