skip to main content
10.1145/3025453.3025466acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access
Best Paper

Illumination Aesthetics: Light as a Creative Material within Computational Design

Authors Info & Claims
Published:02 May 2017Publication History

ABSTRACT

Recent digital fabrication tools have enabled new form-giving using a wide range of physical materials. However, light as a first class creative material has been largely ignored within the design of our electronic objects. Our work expands the illumination design space by treating light as a physical material. We introduce a digital design tool that simulates and visualizes physical light interactions with a variety of materials for creating custom luminaires. We further develop a computational design and fabrication process for creating custom secondary optics elements (SOEs), which provides additional handles for users to physically shape and redirect light to compose, fill, and evenly diffuse planar and volumetric geometries. Through a workshop study with novice electronic designers, we show how incorporating physical techniques to shape light alters how users view the role and function of LEDs and electronics. We produce example pieces that showcase how our approach expands the electronics aesthetic and discuss how viewing light as material can engender novel, expressive artifacts.

Skip Supplemental Material Section

Supplemental Material

pn1042.mp4

mp4

31.6 MB

pn1042p.mp4

mp4

4.5 MB

References

  1. 2015. LED Lighting in the US. Dossier. Statista.Google ScholarGoogle Scholar
  2. Eric Brockmeyer, Ivan Poupyrev, and Scott Hudson. 2013. PAPILLON: Designing Curved Display Surfaces with Printed Optics. In Proceedings of ACM Symposium on User Interface Software and Technology (UIST '13). ACM, NY, NY, USA, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jim Campbell. 2011. Exploded Views. (2011).Google ScholarGoogle Scholar
  4. Hsi-Chao Chen, Jun-Yu Lin, and Hsuan-Yi Chiu. 2013. Rectangular illumination using a secondary optics with cylindrical lens for LED street light. Optics Express 21, 3 (Feb. 2013), 3201.Google ScholarGoogle Scholar
  5. Laura Devendorf, Joanne Lo, Noura Howell, Jung Lin Lee, Nan-Wei Gong, M. Emre Karagozler, Shiho Fukuhara, Ivan Poupyrev, Eric Paulos, and Kimiko Ryokai. 2016. "I Don't Want to Wear a Screen": Probing Perceptions of and Possibilities for Dynamic Displays on Clothing. In Proceedings of ACM SIGCHI Human Factors in Computing Systems (CHI '16). ACM, NY, NY, USA, 6028--6039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Olafur Eliasson. 2003. Olafur Eliasson the Weather Project. (2003). http://www.tate.org.uk/whats-on/exhibition/ unilever-series-olafur-eliasson-weather-project/ olafur-eliasson-weather-projectGoogle ScholarGoogle Scholar
  7. Dan Flavin. 1963. Diagonal of May 25, 1963. (1963). http://www.themodern.org/collection/ Diagonal-of-May-25--1963/1126Google ScholarGoogle Scholar
  8. William Gaver, John Bowers, Andy Boucher, Andy Law, Sarah Pennington, and Nicholas Villar. 2006. The History Tablecloth: Illuminating Domestic Activity. In In: DIS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gjon Mili. 1949. Picasso draws a centaur. (1949).Google ScholarGoogle Scholar
  10. Chris Harrison, John Horstman, Gary Hsieh, and Scott Hudson. 2012. Unlocking the expressivity of point lights. In Proceedings of ACM SIGCHI Human Factors in Computing Systems. 1683--1692. http://dl.acm.org/citation.cfm?id=2208296 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brad Hindson. 2013. Light as Material -- Rethinking How We Use Light. (2013).Google ScholarGoogle Scholar
  12. Jettie Hoonhout, Lillian Jumpertz, Jon Mason, and Tom Bergman. 2013. Exploration into Lighting Dynamics for the Design of More Pleasurable Luminaires. In Proceedings of Designing Pleasurable Products and Interfaces (DPPI '13). ACM, NY, NY, USA, 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Illuminating Engineering Society. 2011. Discover Lighting: An Introduction to Lighting Basics. (2011). http://www.ies.org/lighting/sources/luminaires.cfmGoogle ScholarGoogle Scholar
  14. Juerg Lehni and Jonathan Puckey. 2011. Paper.js. (2011).Google ScholarGoogle Scholar
  15. Rong-Hao Liang, Chao Shen, Yu-Chien Chan, Guan-Ting Chou, Liwei Chan, De-Nian Yang, Mike Y. Chen, and Bing-Yu Chen. 2015. WonderLens: Optical Lenses and Mirrors for Tangible Interactions on Printed Paper. In Proceedings of ACM SIGCHI Human Factors in Computing Systems (CHI '15). ACM, NY, NY, USA, 1281--1284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gordon E. Liljegren and Eugene L. Foster. 1990. Figure with back projected image using fiber optics. (Dec. 1990). http://www.google.com/patents/US4978216 U.S. Classification 353/28, 353/74; International Classification G09F19/00, G09F19/18, G09F19/08, A63H33/22, G03B21/00, A63H3/36, G09F19/02, G03B21/62; Cooperative Classification G09F19/02, G09F19/18, G09F19/08, G09F2019/086, G09F19/00, G09F2019/088; European Classification G09F19/18, G09F19/08.Google ScholarGoogle Scholar
  17. Joanne Lo, Doris Jung Lin Lee, Nathan Wong, David Bui, and Eric Paulos. 2016. Skintillates: Designing and Creating Epidermal Interactions. In Proceedings of Designing Interactive Systems (DIS '16). ACM, NY, NY, USA, 853--864. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wojciech Matusik, Boris Ajdin, Jinwei Gu, Jason Lawrence, Hendrik P. A. Lensch, Fabio Pellacini, and Szymon Rusinkiewicz. 2009. Printing Spatially-varying Reflectance. In ACM SIGGRAPH Asia 2009 Papers (SIGGRAPH Asia '09). ACM, NY, NY, USA, 128:1--128:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. László Moholy-Nagy. 2016. Moholy-Nagy, László: Light-Space-Modulator. (Sept. 2016). http: //www.medienkunstnetz.de/works/licht-raum-modulator/Google ScholarGoogle Scholar
  20. Michael Nitsche, Andrew Quitmeyer, Kate Farina, Samuel Zwaan, and Hye Yeon Nam. 2014. Teaching Digital Craft. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (CHI EA '14). ACM, 719--730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Marios Papas, Thomas Houit, Derek Nowrouzezahrai, Markus Gross, and Wojciech Jarosz. 2012. The Magic Lens: Refractive Steganography. ACM Trans. Graph. 31, 6 (Nov. 2012), 186:1--186:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Thiago Pereira, Szymon Rusinkiewicz, and Wojciech Matusik. 2014. Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display. ACM Trans. Graph. 33, 3 (June 2014), 24:1--24:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. James Pierce and Eric Paulos. 2013. Electric Materialities and Interactive Technology. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13). ACM, NY, NY, USA, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Evan Roth and James Powderly. 2006. LED Throwies. (2006).Google ScholarGoogle Scholar
  25. Daniel Rozin. 1999. Wooden Mirror. (1999).Google ScholarGoogle Scholar
  26. Peter Schreiber, Serge Kudaev, Peter Dannberg, and Uwe D. Zeitner. 2005. Homogeneous LED-illumination using microlens arrays, Vol. 5942. 59420K--59420K--9.Google ScholarGoogle Scholar
  27. James Turrell. 1968. Shallow Space Constructions. (1968).Google ScholarGoogle Scholar
  28. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. In Proceedings of ACM Symposium on User Interface Software and Technology (UIST '12). ACM, NY, NY, USA, 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tomoyuki Yokota, Peter Zalar, Martin Kaltenbrunner, Hiroaki Jinno, Naoji Matsuhisa, Hiroki Kitanosako, Yutaro Tachibana, Wakako Yukita, Mari Koizumi, and Takao Someya. 2016. Ultraflexible organic photonic skin. Science Advances 2, 4 (2016).Google ScholarGoogle Scholar
  30. Qiang Zhou, Wenzheng Yang, Fengtao He, Razvan Stoian, Rongqing Hui, and Guanghua Cheng. 2013. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering. Optics Express 21, 8 (April 2013), 9851.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Illumination Aesthetics: Light as a Creative Material within Computational Design

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader