skip to main content
research-article

A computational design tool for compliant mechanisms

Published:20 July 2017Publication History
Skip Abstract Section

Abstract

We present a computational tool for designing compliant mechanisms. Our method takes as input a conventional, rigidly-articulated mechanism defining the topology of the compliant design. This input can be both planar or spatial, and we support a number of common joint types which, whenever possible, are automatically replaced with parameterized flexures. As the technical core of our approach, we describe a number of objectives that shape the design space in a meaningful way, including trajectory matching, collision avoidance, lateral stability, resilience to failure, and minimizing motor torque. Optimal designs in this space are obtained as solutions to an equilibrium-constrained minimization problem that we solve using a variant of sensitivity analysis. We demonstrate our method on a set of examples that range from simple four-bar linkages to full-fledged animatronics, and verify the feasibility of our designs by manufacturing physical prototypes.

Skip Supplemental Material Section

Supplemental Material

papers-0256.mp4

mp4

379.8 MB

References

  1. Alejandro E. Albanesi, Victor D. Fachinotti, and Martin A. Pucheta. 2010. A Review on Design Methods for Compliant Mechanisms. Mecanica Computacional (2010).Google ScholarGoogle Scholar
  2. Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, Article 47 (July 2012), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99 (July 2015), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it: Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4, Article 96 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (July 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3, Article 63 (Aug. 2008), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jacques Calì, Dan A. Calian, Cristina Amati, Rebecca Kleinberger, Anthony Steed, Jan Kautz, and Tim Weyrich. 2012. 3D-printing of Non-assembly, Articulated Models. ACM Trans. Graph. 31, 6, Article 130 (Nov. 2012), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013. Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Weikai Chen, Xiaolong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph. 35, 4, Article 98 (July 2016), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational Design of Mechanical Characters. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 32, 4 (2013), to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki, N. Kikuchi, and S. Kota. 1997. Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization. Journal of Mechanical Design 2, 119 (Jun 1997), 238--245. Google ScholarGoogle ScholarCross RefCross Ref
  12. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 (July 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evol. Comput. 11, 1 (March 2003), 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jean Hergel and Sylvain Lefebvre. 2015. 3D Fabrication of 2D Mechanisms. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 229--238.Google ScholarGoogle Scholar
  15. Rodney Hill. 1998. The Mathematical Theory of Plasticity. Clarendon Press.Google ScholarGoogle Scholar
  16. Jonathan B. Hopkins and Martin L. Culpepper. 2010a. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT) âĂŞ Part I: Principles. Precision Engineering 34, 2 (2010), 259 -- 270. Google ScholarGoogle ScholarCross RefCross Ref
  17. Jonathan B. Hopkins and Martin L. Culpepper. 2010b. Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT). Part II: Practice. Precision Engineering 34, 2 (2010), 271 -- 278. Google ScholarGoogle ScholarCross RefCross Ref
  18. L.L. Howell and A. Midha. 1994. A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots. ASME. J. Mech. Des. 116, 1 (1994), 280--290. Google ScholarGoogle ScholarCross RefCross Ref
  19. Larry L. Howell. 2001. Compliant Mechanisms. Wiley-Interscience.Google ScholarGoogle Scholar
  20. Larry L. Howell, Spencer P. Magleby, and Brian M. Olsen. 2013. Handbook of Compliant Mechanisms. Wiley. Google ScholarGoogle ScholarCross RefCross Ref
  21. Zhen Huang, Qinchuan Li, and Huafeng Ding. 2013. Basics of Screw Theory. Springer Netherlands, Dordrecht, 1--16. Google ScholarGoogle ScholarCross RefCross Ref
  22. Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra. 2014. Creating Works-like Prototypes of Mechanical Objects. ACM Trans. Graph. 33, 6, Article 217 (Nov. 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sridhar Kota and GK Ananthasuresh. 1995. Designing compliant mechanisms. Mechanical Engineering-CIME 117, 11 (1995), 93--97.Google ScholarGoogle Scholar
  24. Sridhar Kota, Jinyong Joo, Zhe Li, Steven M. Rodgers, and Jeff Sniegowski. 2001. Design of Compliant Mechanisms: Applications to MEMS. Analog Integr. Circuits Signal Process. 29, 1--2 (Oct. 2001), 7--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L.D. Landau, L.P. Pitaevskii, A.M. Kosevich, and E.M. Lifshitz. 1986. Theory of Elasticity. Elsevier. 38 -- 86 pages.Google ScholarGoogle Scholar
  26. Padmanabh Limaye, G. Ramu, Sindhuja Pamulapati, and G.K. Ananthasuresh. 2012. A compliant mechanism kit with flexible beams and connectors along with analysis and optimal synthesis procedures. Mechanism and Machine Theory 49 (2012), 21 -- 39. https://www.youtube.com/watch?v=HuOEG5FqTAE. Google ScholarGoogle ScholarCross RefCross Ref
  27. Minmin Lin, Tianjia Shao, Youyi Zheng, Niloy J. Mitra, and Kun Zhou. 2016. Recovering Functional Mechanical Assemblies from Raw Scans. Transactions on Visualization and Comptuer Graphics (2016).Google ScholarGoogle Scholar
  28. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to Weight 3D Printed Objects. ACM Trans. Graph. 33, 4, Article 97 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of Stable Planar-rod Structures. ACM Trans. Graph. 35, 4, Article 86 (July 2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala. 2010. Illustrating How Mechanical Assemblies Work. ACM Trans. Graph. 29, 4, Article 58 (July 2010), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush Toys. ACM Trans. Graph. 26, 3, Article 45 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2015. Reduced-Order Shape Optimization Using Offset Surfaces. ACM Transactions on Graphics (ACM SIGGRAPH 2015) 34, 4 (Aug. 2015), to appear-9. http://www.cg.tuwien.ac.at/research/publications/2015/musialski-2015-souos/Google ScholarGoogle Scholar
  33. Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Mathematics of computation 35, 151 (1980), 773--782. Google ScholarGoogle ScholarCross RefCross Ref
  34. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 32, 4 (2013), to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MartÃŋn A. Pucheta and Alberto Cardona. 2010. Design of bistable compliant mechanisms using precisionâĂŞposition and rigid-body replacement methods. Mechanism and Machine Theory 45, 2 (2010), 304 -- 326. Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Rutishauser, A. Sproewitz, L. Righetti, and A. J. Ijspeert. 2008. Passive compliant quadruped robot using central pattern generators for locomotion control. International Conference on Biomedical Robotics and Biomechatronics (2008).Google ScholarGoogle Scholar
  38. Christian Schüller, Daniele Panozzo, Anselm Grundhöfer, Henning Zimmer, Evgeni Sorkine, and Olga Sorkine-Hornung. 2016. Computational Thermoforming. ACM Trans. Graph. 35, 4, Article 43 (July 2016), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 32, 4 (2013), to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Stuart T. Smith. 2000. Flexure: Elements of Elastic Mechanuisms. CRC Press.Google ScholarGoogle ScholarCross RefCross Ref
  42. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based Characters. ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi. 2014. Pteromys: Interactive Design and Optimization of Free-formed Free-flight Model Airplanes. ACM Trans. Graph. 33, 4, Article 65 (July 2014), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nobuyuki Umetani, Athina Panotopoulou, Ryan Schmidt, and Emily Whiting. 2016. Printone: Interactive Resonance Simulation for Free-form Print-wind Instrument Design. ACM Trans. Graph. 35, 6, Article 184 (Nov. 2016), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Nobuyuki Umetani and Ryan Schmidt. 2013. Cross-sectional Structural Analysis for 3D Printing Optimization. In SIGGRAPH Asia 2013 Technical Briefs (SA '13). ACM, New York, NY, USA, Article 5, 4 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Michael Yu Wang and Shikui Chen. 2009. Compliant Mechanism Optimization: Analysis and Design with Intrinsic Characteristic Stiffness. Mechanics Based Design of Structures and Machines 37, 2 (2009), 183--200. arXiv:http://dx.doi.org/10.1080/15397730902761932 Google ScholarGoogle ScholarCross RefCross Ref
  48. Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Article 99 (July 2016), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, Article 137 (July 2013), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012. Motion-guided Mechanical Toy Modeling. ACM Trans. Graph. 31, 6, Article 127 (Nov. 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 4
    August 2017
    2155 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3072959
    Issue’s Table of Contents

    Copyright © 2017 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 20 July 2017
    Published in tog Volume 36, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader