skip to main content
research-article

Design and Performance Evaluation of Network-assisted Control Strategies for HTTP Adaptive Streaming

Published:28 June 2017Publication History
Skip Abstract Section

Abstract

This article investigates several network-assisted streaming approaches that rely on active cooperation between video streaming applications and the network. We build a Video Control Plane that enforces Video Quality Fairness among concurrent video flows generated by heterogeneous client devices. For this purpose, a max-min fairness optimization problem is solved at runtime. We compare two approaches to actuate the optimal solution in an Software Defined Networking network: The first one allocates network bandwidth slices to video flows, and the second one guides video players in the video bitrate selection. We assess performance through several QoE-related metrics, such as Video Quality Fairness, video quality, and switching frequency. The impact of client-side adaptation algorithms is also investigated.

References

  1. S. Akhshabi, L. Ananthakrishnan, A. C. Begen, and C. Dovrolis. 2012. What happens when HTTP adaptive streaming players compete for bandwidth? In Proceedings of the ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’12). 9--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Akhshabi, L. Ananthakrishnan, A. C. Begen, and C. Dovrolis. 2013. Server-based traffic shaping for stabilizing oscillating adaptive streaming players. In Proceedings of the ACM SIGMM Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’13). 19--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Akhshabi, S. Narayanaswamy, A. C. Begen, and C. Dovrolis. 2012. An experimental evaluation of rate-adaptive video players over HTTP. Sign. Process.: Image Commun. 27, 4 (2012), 271--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang. 2013. Developing a predictive model of quality of experience for internet video. In Proceedings of the ACM International Conference of the Special Interest Group on Data Communication (SIGCOMM’13). 43, 339--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bertsekas and R. Gallager. 1992. Data Networks. Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Bertsimas, V. F. Farias, and N. Trichakis. 2011. The price of fairness. Operat. Res. 59, 1 (2011), 17--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Cofano, L. De Cicco, and S. Mascolo. 2014. A control architecture for massive adaptive video streaming delivery. In Proceedings of VideoNext. 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Cofano, L. De Cicco, and S. Mascolo. in press 2016a. Modeling and design of adaptive video streaming control systems. (unpublished).Google ScholarGoogle Scholar
  9. G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo. 2016b. Design and experimental evaluation of network-assisted strategies for HTTP adaptive streaming. In Proceedings of the of ACM Multimedia Systems Conference (MMSys’16). Article 3, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. 2013. ELASTIC: A client-side controller for dynamic adaptive streaming over HTTP (DASH). In Proceedings of the Packet Video Workshop. 1--8.Google ScholarGoogle Scholar
  11. L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. 2014. TAPAS: A tool for rApid prototyping of adaptive streaming algorithms. In Proceedings of VideoNext. 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. De Cicco and S. Mascolo. 2014. An adaptive video streaming control system: Modeling, validation, and performance evaluation. IEEE/ACM Trans. Netw. 22, 2 (2014), 526--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang. 2015. C3: Internet-scale control plane for video quality optimization. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI’15). 131--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. 2013. Towards network-wide QoE fairness using openflow-assisted adaptive video streaming. In Proceedings of the ACM International Conference of the Special Interest Group on Data CommunicationSIGCOMM Workshop on Future Human-centric Multimedia Networking. 15--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. 2012. Initial delay vs. interruptions: Between the devil and the deep blue sea. In Proceedings of International Workshop on Quality of Multimedia Experience (QoMEX’12).Google ScholarGoogle Scholar
  16. T. Hoßfeld, R. Schatz, and U. R. Krieger. 2014. QoE of youtube video streaming for current internet transport protocols. In Proceedings of the Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance International Conference. 136--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia. 2011. Quantification of youtube QoE via crowdsourcing. In Proceedings of the IEEE Workshop on Multimedia Quality of Experience - Modeling, Evaluation, and Directions (MQoE’11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. 2014. Assessing effect sizes of influence factors towards a QoE model for HTTP adaptive streaming. In Proceedings of the International Workshop on Quality of Multimedia Experience (QoMEX’14). 111--116.Google ScholarGoogle Scholar
  19. T. Hossfeld, D. Strohmeier, A. Raake, and R. Schatz. 2013. Pippi longstocking calculus for temporal stimuli pattern on youtube QoE: 1+ 1= 3 and 1· 4 ≠ 4· 1. In Proceedings of the 5th Workshop on Mobile Video. 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Houdaille and S. Gouache. 2012. Shaping HTTP adaptive streams for a better user experience. In Proceedings of the ACM Multimedia Systems Conference (MMSys’12). 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. 2012. Confused, timid, and unstable: Picking a video streaming rate is hard. In Proceedings of the ACM Internet Measurement Conference (IMC’12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Jarschel, F. Wamser, T. Höhn, T. Zinner, and P. Tran-Gia. 2013. SDN-based application-aware networking on the example of youtube video streaming. In Proceedings of the European Workshop on Software Defined Networks (EWSDN’13). 87--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. 2016. CFA: A practical prediction system for video QoE optimization. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI’16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Jiang, V. Sekar, and H. Zhang. 2012. Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. In Proceedings of the ACM International Conference on Emerging Networking Experiments and Technologies (CoNEXT’16). 97--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. W. Kleinrouweler, S. Cabrero, and P. Cesar. 2016. Delivering stable high-quality video: An SDN architecture with DASH assisting network elements. In Proceedings of the ACM Multimedia Systems Conference (MMSys’16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. W. Kleinrouweler, S. Cabrero, R. van der Mei, and P. Cesar. 2015. Modeling the effect of sharing policies for network-assisted HTTP adaptive video streaming. ACM SIGMETRICS Perf. Eval. Rev. 43, 2 (2015), 26--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. S. Krishnan and R. K. Sitaraman. 2013. Video stream quality impacts viewer behavior: Inferring causality using quasi-experimental designs. IEEE/ACM Trans. Netw. 21, 6 (2013), 2001--2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Mansy, M. Fayed, and M. Ammar. 2015. Network-layer fairness for adaptive video streams. In Proceedings of IFIP/IEEE Networking. 42--48.Google ScholarGoogle Scholar
  29. M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang. 2015. Practical, real-time centralized control for CDN-based live video delivery. In Proceedings of the ACM International Conference of the Special Interest Group on Data Communication (SIGCOMM’15). 311--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen. 2011. Flicker effects in adaptive video streaming to handheld devices. In Proceedings of ACM MultiMedia. 463--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck. 2015. QoE-driven rate adaptation heuristic for fair adaptive video streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2, Article 28 (2015), 24 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack. 2010. Study of subjective and objective quality assessment of video. IEEE Trans. Image Process. 19, 6 (June 2010), 1427--1441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. 2015a. A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 17, 1 (2015), 469--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Seufert, T. Hoßfeld, and C. Sieber. 2015b. Impact of intermediate layer on quality of experience of HTTP adaptive streaming. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM’15). 256--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong, J. Matthews, and C. Russell. 2013. Virtualizing the access network via open APIs. In Proceedings of the ACM International Conference on Emerging Networking Experiments and Technologies (CoNEXT’13). 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. L. Toni, R. Aparicio-Pardo, K. Pires, G. Simon, A. Blanc, and P. Frossard. 2015. Optimal selection of adaptive streaming representations. ACM Trans. Multimedia Comput. Commun. Appl. 11, 2s, Article 43 (Feb. 2015), 26 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 4 (2004), 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. 2011. Better never than late: Meeting deadlines in datacenter networks. In Proceedings of the ACM International Conference of the Special Interest Group on Data Communication (SIGCOMM’11). 50--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. L. Zhi, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale. IEEE J. Select. Areas Commun. 32, 4 (2014), 719--733.Google ScholarGoogle ScholarCross RefCross Ref
  40. T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W. Kellerer. 2014. Dynamic application-aware resource management using software-defined networking: Implementation prospects and challenges. In Proceedings of the IEEE Network Operations and Management Symposium (NOMS’14). 1--6.Google ScholarGoogle Scholar

Index Terms

  1. Design and Performance Evaluation of Network-assisted Control Strategies for HTTP Adaptive Streaming

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Multimedia Computing, Communications, and Applications
          ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 13, Issue 3s
          Special Section on Deep Learning for Mobile Multimedia and Special Section on Best Papers from ACM MMSys/NOSSDAV 2016
          August 2017
          258 pages
          ISSN:1551-6857
          EISSN:1551-6865
          DOI:10.1145/3119899
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 June 2017
          • Accepted: 1 March 2017
          • Revised: 1 January 2017
          • Received: 1 September 2016
          Published in tomm Volume 13, Issue 3s

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader