skip to main content
research-article
Public Access

An Average-Case Depth Hierarchy Theorem for Boolean Circuits

Published:29 August 2017Publication History
Skip Abstract Section

Abstract

We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND, OR, and NOT gates. Our hierarchy theorem says that for every d ≥ 2, there is an explicit n-variable Boolean function f, computed by a linear-size depth-d formula, which is such that any depth-(d−1) circuit that agrees with f on (1/2 + on(1)) fraction of all inputs must have size exp(nΩ (1/d)). This answers an open question posed by Håstad in his Ph.D. thesis (Håstad 1986b).

Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of Håstad (1986a), Cai (1986), and Babai (1987). We also use our result to show that there is no “approximate converse” to the results of Linial, Mansour, Nisan (Linial et al. 1993) and (Boppana 1997) on the total influence of bounded-depth circuits.

A key ingredient in our proof is a notion of random projections which generalize random restrictions.

References

  1. Scott Aaronson. The Complexity Zoo. Retrieved from http://cse.unl.edu/∼cbourke/latex/ComplexityZoo.pdf.Google ScholarGoogle Scholar
  2. Scott Aaronson. 2010a. A counterexample to the generalized linial-nisan conjecture. Electr. Colloq. Comput. Complex. 17 (2010), 109.Google ScholarGoogle Scholar
  3. Scott Aaronson. 2010b. BQP and the polynomial hierarchy. In Proceedings of the 42nd ACM Symposium on Theory of Computing. 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amir Abboud, Ryan Williams, and Huacheng Yu. 2015. More applications of the polynomial method to algorithm design. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms. Google ScholarGoogle ScholarCross RefCross Ref
  5. Miklós Ajtai. 1983. Σ11-Formulae on finite structures. Ann. Pure Appl. Logic 24, 1 (1983), 1--48.Google ScholarGoogle ScholarCross RefCross Ref
  6. Miklós Ajtai. 1994. The independence of the modulo p counting principles. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing. 402--411.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. László Babai. 1987. Random oracles separate PSPACE from the polynomial-time hierarchy. Inform. Process. Lett. 26, 1 (1987), 51--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Theodore Baker, John Gill, and Robert Solovay. 1975. Relativizations of the P=?NP question. SIAM J. Comput. 4, 4 (1975), 431--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Theodore Baker and Alan Selman. 1979. A second step toward the polynomial hierarchy. Theoret. Comput. Sci. 8, 2 (1979), 177--187. Google ScholarGoogle ScholarCross RefCross Ref
  10. Louay Bazzi. 2009. Polylogarithmic independence can fool DNF formulas. SIAM J. Comput. 38, 6 (2009), 2220--2272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. 2012. Approximating by small height decision trees and a deterministic algorithm for -. In Proceedings of the 27th Conference on Computational Complexity. 117--125.Google ScholarGoogle Scholar
  12. Itai Benjamini, Gil Kalai, and Oded Schramm. 1999. Noise sensitivity of boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90 (1999), 5--43. Google ScholarGoogle ScholarCross RefCross Ref
  13. Charles Bennett and John Gill. 1981. Relative to a random oracle A PA ≠ NPAcoNPA, with probability 1. SIAM J. Comput. 10, 1 (1981), 96--113. Google ScholarGoogle ScholarCross RefCross Ref
  14. Ronald Book. 1994. On collapsing the polynomial-time hierarchy. Inform. Process. Lett. 52, 5 (1994), 235--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ravi Boppana. 1997. The average sensitivity of bounded-depth circuits. Inform. Process. Lett. 63, 5 (1997), 257--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mark Braverman. 2010. Polylogarithmic independence fools AC0 circuits. J. ACM 57, 5 (2010), 28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nader Bshouty and Christino Tamon. 1996. On the fourier spectrum of monotone functions. J. ACM 43, 4 (1996), 747--770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jin-Yi Cai. 1986. With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing. 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liming Cai, Jianer Chen, and Johan Håstad. 1998. Circuit bottom fan-in and computational power. SIAM J. Comput. 27, 2 (1998), 341--355.Google ScholarGoogle ScholarCross RefCross Ref
  20. Ding-Zhu Du and Ker-I Ko. 2000. Theory of Computational Complexity. John Wiley 8 Sons, Inc.Google ScholarGoogle Scholar
  21. Lance Fortnow. 1999. Relativized worlds with an infinite hierarchy. Inform. Process. Lett. 69, 6 (1999), 309--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Merrick Furst, James Saxe, and Michael Sipser. 1981. Parity, circuits, and the polynomial-time hierarchy. In Proceedings of the 22nd IEEE Annual Symposium on Foundations of Computer Science. 260--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Oded Goldreich and Avi Wigderson. 2013. On the size of depth-three boolean circuits for computing multilinear functions. Electronic Colloquium on Computational Complexity (2013).Google ScholarGoogle Scholar
  24. András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. 1993. Threshold circuits of bounded depth. J. Comput. System Sci. 46 (1993), 129--154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Johan Håstad. 1986a. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing. 6--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Johan Håstad. 1986b. Computational Limitations for Small Depth Circuits. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  27. Johan Håstad. 1989. Almost Optimal Lower Bounds for Small Depth Circuits. JAI Press, 143--170.Google ScholarGoogle Scholar
  28. Johan Håstad. 2014. On the correlation of parity and small-depth circuits. SIAM J. Comput. 43, 5 (2014), 1699--1708.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Håstad. 2016. An average-case depth hierarchy theorem for higher depths. In Proceedings of the 57th IEEE FOCS.Google ScholarGoogle ScholarCross RefCross Ref
  30. Hamed Hatami. 2014. Scribe notes for the course COMP760: Harmonic Analysis of Boolean Functions. Retrieved from http://cs.mcgill.ca/∼hatami/comp760-2014/lectures.pdf.Google ScholarGoogle Scholar
  31. Lane Hemaspaandra. 1994. Complexity theory column 5: The not-ready-for-prime-time conjectures. ACM SIGACT News 25, 2 (1994), 5--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lane Hemaspaandra and Mitsunori Ogihara. 2002. The Complexity Theory Companion. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  33. Lane Hemaspaandra, Ajit Ramachandran, and Marius Zimand. 1995. Worlds to die for. ACM SIGACT News 26, 4 (1995), 5--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Russell Impagliazzo, William Matthews, and Ramamohan Paturi. 2012. A satisfiability algorithm for . In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. 961--972. Google ScholarGoogle ScholarCross RefCross Ref
  35. Russell Impagliazzo and Nathan Segerlind. 2001. Counting axioms do not polynomially simulate counting gates. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science. 200--209. Google ScholarGoogle ScholarCross RefCross Ref
  36. David Johnson. 1986. The NP-completeness column: An ongoing guide. J. Algor. 7, 2 (1986), 289--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stasys Jukna. 2012. Boolean Function Complexity. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  38. Maria Klawe, Wolfgang Paul, Nicholas Pippenger, and Mihalis Yannakakis. 1984. On monotone formulae with restricted depth. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing. 480--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jan Krajíček, Pavel Pudlák, and Alan Woods. 1995. An exponential lower bound to the size of bounded depth frege proofs of the pigeonhole principle. Random Struct. Algor. 7, 1 (1995), 15--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Nathan Linial, Yishay Mansour, and Noam Nisan. 1993. Constant depth circuits, fourier transform, and learnability. J. ACM 40, 3 (1993), 607--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yishay Mansour. 1995. An O(nlog log n) learning algorithm for DNF under the uniform distribution. J. Comput. System Sci. 50 (1995), 543--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Noam Nisan. 1991. Pseudorandom bits for constant depth circuits. Combinatorica 11, 1 (1991), 63--70. Google ScholarGoogle ScholarCross RefCross Ref
  43. Ryan O’Donnell. 2007. Lecture 29: Open Problems. Scribe notes for the course CMU 18-859S: Analysis of Boolean Functions. Retrieved from http://www.cs.cmu.edu/∼odonnell/boolean-analysis.Google ScholarGoogle Scholar
  44. Ryan O’Donnell and Karl Wimmer. 2007. Approximation by DNF: Examples and counterexamples. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming. 195--206.Google ScholarGoogle ScholarCross RefCross Ref
  45. Toniann Pitassi, Paul Beame, and Russell Impagliazzo. 1993. Exponential lower bounds for the pigeonhole principle. Comput. Complex. 3, 2 (1993), 97--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Alexander Razborov. 1987. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Math. Not. Acad. Sci. USSR 41, 4 (1987), 333--338. Google ScholarGoogle ScholarCross RefCross Ref
  47. Alexander Razborov. 2009. A simple proof of Bazzi’s theorem. ACM Trans. Comput. Theory 1, 1 (2009), 3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Benjamin Rossman. 2015. The average sensitivity of bounded-depth formulas. In Proceedings of the 56th Annual Symposium on Foundations of Computer Science. 424--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. 2015a. Complexity theory column 89: The polynomial hierarchy, random oracles, and boolean circuits. SIGACT News 46, 4 (2015), 50--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. 2015b. An average-case depth hierarchy theorem for boolean circuits. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS’15). IEEE, 1030--1048. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Nathan Segerlind, Sam Buss, and Russell Impagliazzo. 2004. A switching lemma for small restrictions and lower bounds for -DNF resolution. SIAM J. Comput. 33, 5 (2004), 1171--1200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. David Shmoys and Éva Tardos. 1995. Computational complexity. In Handbook of Combinatorics (Ronald Graham, Martin Grötschel, and Lászlo Lovász, eds.), Vol. 2. North-Holland.Google ScholarGoogle Scholar
  53. Michael Sipser. 1983. Borel sets and circuit complexity. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing. 61--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Roman Smolensky. 1987. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing. 77--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Bella Subbotovskaya. 1961. Realizations of linear functions by formulas using V, 8, . Dokl. Akad. Nauk SSSR 136, 3 (1961), 553--555.Google ScholarGoogle Scholar
  56. Gábor Tardos. 1989. Query complexity, or why is it difficult to separate NPA ∩ coNPA from PA by random oracles A?Combinatorica 9, 4 (1989), 385--392.Google ScholarGoogle Scholar
  57. Leslie Valiant. 1983. Exponential lower bounds for restricted monotone circuits. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing. 110--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Emanuele Viola. 2017. Selected challenges in computational lower bounds. ACM SIGACT News 48, 1 (March 2017), 39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Heribert Vollmer and Klaus W. Wagner. 1997. Measure one results in computational complexity theory. In Advances in Algorithms, Languages, and Complexity —In Honor of Ronald V. Book. 285--312. Google ScholarGoogle ScholarCross RefCross Ref
  60. Ryan Williams. 2014a. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing. 664--673. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Ryan Williams. 2014b. The polynomial method in circuit complexity applied to algorithm design (invited survey). In Proceedings of the 34th Foundations of Software Technology and Theoretical Computer Science Conference.Google ScholarGoogle Scholar
  62. Andrew Yao. 1985. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An Average-Case Depth Hierarchy Theorem for Boolean Circuits

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 64, Issue 5
      October 2017
      266 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/3136515
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 August 2017
      • Accepted: 1 May 2017
      • Received: 1 October 2016
      Published in jacm Volume 64, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader