skip to main content
10.1145/3107411.3107492acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
short-paper
Public Access

Predicting the Effect of Point Mutations on Protein Structural Stability

Published:20 August 2017Publication History

ABSTRACT

Predicting how a point mutation alters a protein's stability can guide drug design initiatives which aim to counter the effects of serious diseases. Mutagenesis studies give insights about the effects of amino acid substitutions, but such wet-lab work is prohibitive due to the time and costs needed to assess the consequences of even a single mutation. Computational methods for predicting the effects of a mutation are available, with promising accuracy rates. In this work we study the utility of several machine learning methods and their ability to predict the effects of mutations. We in silico generate mutant protein structures, and compute several rigidity metrics for each of them. Our approach does not require costly calculations of energy functions that rely on atomic-level statistical mechanics and molecular energetics. Our metrics are features for support vector regression, random forest, and deep neural network methods. We validate the effects of our in silico mutations against experimental Delta Delta G stability data. We attain Pearson Correlations upwards of 0.69.

References

  1. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://tensorflow.org/. Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. T. Alber, S. Dao-pin, J.A. Wozniak, S.P. Cook, and B.W. Matthews. 1987. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Nature 330 (1987), 41--46.Google ScholarGoogle ScholarCross RefCross Ref
  3. E. Andersson, R. Hsieh, H. Szeto, R. Farhoodi N. Haspel, and F. Jagodzinski. 2016. Assessing how multiple mutations affect protein stability using rigid cluster size distributions. In Computational Advances in Bio and Medical Sciences (ICCABS), 2016 IEEE 6th International Conference on. IEEE, 1--6.Google ScholarGoogle Scholar
  4. E. Andersson and F. Jagodzinski. 2017. ProMuteHT: A High Throughput Compute Pipeline for Generating Protein Mutants in silico. In CSBW (Computational Structural Bioinformatics Workshop), in proc. of ACM-BCB (ACM International conference on Bioinformatics and Computational Biology). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Akbal-Delibas, F. Jagodzinski, and N. Haspel. 2013. A Conservation and Rigidity Based Method for Detecting Critical Protein Residues. BMC Structural Biology 13(Suppl 1) (2013), S6.Google ScholarGoogle Scholar
  6. D. Basak, S. Pal, and D.C. Patranabis. 2007. Support vector regression. Neural Information Processing-Letters and Reviews 11, 10 (2007), 203--224.Google ScholarGoogle Scholar
  7. J.A. Bell, W.J. Becktel, U. Sauer, W.A. Baase, and B.W. Matthews. 1992. Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59. Biochemistry 31 (1992), 3590--3596. Issue 14.Google ScholarGoogle ScholarCross RefCross Ref
  8. L. Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Brender and Y. Zhang. 2015. Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Computational Biology 11, 10 (2015), e1004494.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Cheng, A. Randall, and P. Baldi. 2006. Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines. PROTEINS: Structure, Function, and Bioinformatics 62 (2006), 1125--1132.Google ScholarGoogle ScholarCross RefCross Ref
  11. R.L. Jr. Dunbrack and M. Karplus. 1994. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nature Structural Biology 1 (1994), 334--340. Issue 5.Google ScholarGoogle ScholarCross RefCross Ref
  12. A.E. Eriksson, W.A. Baase, X.J. Zhang, D.W. Heinz, E.P. Baldwin, and B.W. Matthews. 1992. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255 (1992), 178--183.Google ScholarGoogle ScholarCross RefCross Ref
  13. N. Fox, F. Jagodzinski, and I. Streinu. 2012. Kinari-lib: a C++ library for pebble game rigidity analysis of mechanical models. Minisymposium on Publicly Available Geometric/Topological Software (2012).Google ScholarGoogle Scholar
  14. S.C. Garman and D.N. Garboczi. 2002. Structural basis of Fabry disease. Molecular Genetics and Metabolism 77, 1 (2002), 3--11.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Gilis and M. Rooman. 1997. Predicting protein stability changes upon mutation usings database derived potentials : Solvent accessiblity determines the importances of local versus non-local interactions along the sequence. Journal Molecular Biology 272 (1997), 276--290. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  16. D.J. Jacobs, A.J. Rader, M.F. Thorpe, and L.A. Kuhn. 2001. Protein Flexibility Predictions Using Graph Theory. Proteins 44 (2001), 150--165.Google ScholarGoogle ScholarCross RefCross Ref
  17. F. Jagodzinski, B. Akbal-Delibas, and N. Haspel. 2013. An Evolutionary Conservation & Rigidity Analysis Machine Learning Approach for Detecting Critical Protein Residues. In CSBW (Computational Structural Bioinformatics Workshop), in proc. of ACM-BCB (ACM International conference on Bioinformatics and Computational Biology). 780--786. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. F. Jagodzinski, J. Hardy, and I. Streinu. 2012. Using rigidity analysis to probe mutation-induced structural changes in proteins. Journal of Bioinformatics and Computational Biology 10 (2012). Issue 3.Google ScholarGoogle Scholar
  19. J. Janin and S. Wodak. 1978. Conformation of amino acid side-chains in proteins. Journal of Molecular Biology 125 (1978), 357--386. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  20. L. Jia, R. Yarlagadda, and C.C. Reed. 2015. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools. PloS One 10, 9 (2015), e0138022.Google ScholarGoogle ScholarCross RefCross Ref
  21. D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  22. G. Krivov, M. Shapovalov, and R.L. Dunbrack. 2009. Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Structure, Function, and Bioinformatics 77, 4 (2009), 778--795.Google ScholarGoogle ScholarCross RefCross Ref
  23. M.D. Kumar, K.A. Bava, M.M. Gromiha, P. Prabakaran, K. Kitajima, H. Uedaira, and A. Sarai. 2005. Protherm and Pronit : Thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Research 34 (2005), D204--D206.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Lee and M. Levitt. 1991. Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature 352 (1991), 448--451.Google ScholarGoogle ScholarCross RefCross Ref
  25. Y. Li and J. Fang. 2012. PROTS-RF: a robust model for predicting mutation-induced protein stability changes. PloS one 7, 10 (2012), e47247.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Matsumura, W.J. Becktel, and B.W. Matthews. 1988. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature 334 (1988), 406--410.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. Mooers, W.A. Baase, J.W. Wray, and B.W. Matthews. 2009. Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme. Protein Science 18 (2009), 871--880. Issue 5.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Nicholson, E. Soderlind, D.E. Tronrud, and B.W. Matthews. 1989. Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme. Journal of Molecular Biology 210 (1989), 181--193. Issue 1.Google ScholarGoogle ScholarCross RefCross Ref
  29. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825--2830. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 16 (2005), 1781--1802.Google ScholarGoogle ScholarCross RefCross Ref
  31. J.W. Ponder and F.M. Richards. 1987. Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes. Journal of Molecular Biology 193 (1987), 775--791. Issue 4.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Prevost, S.J. Wodak, B. Tidor, and M. Karplus. 1991. Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96-Ala mutation in barnase. Proceedings of the National Academy of Sciences 88 (1991), 10880--10884. Issue 23.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. Snoek, H. Larochelle, and R.P. Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in neural information processing systems. 2951--2959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Song, C.M. Breneman, J. Bi, N. Sukumar, K.P. Bennett, S. Cramer, and N. Tugcu. 2002. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. Journal of Chemical Information and computer sciences 42, 6 (2002), 1347--1357.Google ScholarGoogle ScholarCross RefCross Ref
  35. C.M. Topham, N. Srinivasan, and T. Blundell. 1997. Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitutions and propensity tables. Protein Engineering 10, 1 (1997), 7--21.Google ScholarGoogle ScholarCross RefCross Ref
  36. C.L. Worth, R. Preissner, and L. Blundell. 2011. SDM-a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research 39 (2011), W215--W222. Issue Web Server Issue.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Predicting the Effect of Point Mutations on Protein Structural Stability

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics
          August 2017
          800 pages
          ISBN:9781450347228
          DOI:10.1145/3107411

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 August 2017

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • short-paper

          Acceptance Rates

          ACM-BCB '17 Paper Acceptance Rate42of132submissions,32%Overall Acceptance Rate254of885submissions,29%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader