skip to main content
research-article

High-quality hyperspectral reconstruction using a spectral prior

Published:20 November 2017Publication History
Skip Abstract Section

Abstract

We present a novel hyperspectral image reconstruction algorithm, which overcomes the long-standing tradeoff between spectral accuracy and spatial resolution in existing compressive imaging approaches. Our method consists of two steps: First, we learn nonlinear spectral representations from real-world hyperspectral datasets; for this, we build a convolutional autoencoder which allows reconstructing its own input through its encoder and decoder networks. Second, we introduce a novel optimization method, which jointly regularizes the fidelity of the learned nonlinear spectral representations and the sparsity of gradients in the spatial domain, by means of our new fidelity prior. Our technique can be applied to any existing compressive imaging architecture, and has been thoroughly tested both in simulation, and by building a prototype hyperspectral imaging system. It outperforms the state-of-the-art methods from each architecture, both in terms of spectral accuracy and spatial resolution, while its computational complexity is reduced by two orders of magnitude with respect to sparse coding techniques. Moreover, we present two additional applications of our method: hyperspectral interpolation and demosaicing. Last, we have created a new high-resolution hyperspectral dataset containing sharper images of more spectral variety than existing ones, available through our project website.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat. G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: A System for Large-scale Machine Learning. In Proc. USENIX Conf. Operating Systems Design and Implementation (OSDI'16). 265--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Manya V. Afonso, José M. Bioucas-Dias, and Mário A. T. Figueiredo. 2011. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Processing (TIP) 20, 3 (2011), 681--695. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sara Alvarez, Timo Kunkel, and Belen Masia. 2016. Practical Low-Cost Recovery of Spectral Power Distributions. Computer Graphics Forum 35, 1 (2016), 166--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Michael Attas, Edward Cloutis, Catherine Collins, Douglas Goltz, Claudine Majzels. James R Mansfield, and Henry H Mantsch. 2003. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cultural Heritage 4, 2 (2003), 127--136.Google ScholarGoogle ScholarCross RefCross Ref
  5. Seung-Hwan Baek, Incheol Kim, Diego Gutierrez, and Min H. Kim. 2017. Compact Single-Shot Hyperspectral Imaging Using a Prism. ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2017) 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jose M. Bioucas-Dias and Mario A. T. Figueiredo. 2007. A new TwIST: two-step iterative shrinkage/thresholding for image restoration. IEEE Trans. Image Processing (TIP) 16, 12 (2007), 2992--3004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Brusco, S. Capeleto, M. Fedel, A. Paviotti, L. Poletto, G. M. Cortelazzo, and G. Tondello. 2006. A system for 3D modeling frescoed historical buildings with multispectral texture information. Machine Vision and Applications 17, 6 (2006), 373--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Xun Cao, Hao Du, Xin Tong, Qionghai Dai, and Stephen Lin. 2011. A prism-mask system for multispectral video acquisition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 33, 12 (2011), 2423--2435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Chakrabarti and T. Zickler. 2011. Statistics of Real-World Hyperspectral Images. In Proc. IEEE Conf. Comput. Vis. Pattern. Recognit. (CVPR). 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu. 2014. Deep Learning-Based Classification of Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, 6 (2014), 2094--2107.Google ScholarGoogle ScholarCross RefCross Ref
  11. B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao. 2016. Stacked Convolutional Denoising Auto-Encoders for Feature Representation. IEEE Trans. Cybernetics PP. 99 (2016), 1--11.Google ScholarGoogle Scholar
  12. Ying Fu, Yinqiang Zheng, Imari Sato, and Yoichi Sato. 2016. Exploiting Spectral-Spatial Correlation for Coded Hyperspectral Image Restoration. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  13. Nahum Gat. 2000. Imaging spectroscopy using tunable filters: a review. In Proc. AeroSense 2000. 50--64.Google ScholarGoogle Scholar
  14. M E Gehm, R John, D J Brady, R M Willett, and T J Schulz. 2007. Single-shot compressive spectral imaging with a dual-disperser architecture. OSA Optics Express (OE) 15, 21 (2007), 14013--27.Google ScholarGoogle ScholarCross RefCross Ref
  15. Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Aistats, Vol. 9. 249--256.Google ScholarGoogle Scholar
  16. Mohammad Golbabaee, Simon Arberet, and Pierre Vandergheynst. 2013. Compressive source separation: Theory and methods for hyperspectral imaging. IEEE Transactions on Image Processing (TIP) 22, 12 (2013), 5096--5110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ralf Habel, Michael Kudenov, and Michael Wimmer. 2012. Practical spectral photography. In Computer Graphics Forum (Proc. EUROGRAPHICS 2012), Vol. 31. Wiley Online Library, 449--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786 (2006), 504--507.Google ScholarGoogle Scholar
  19. Gudrun Hoye and Andrei Fridman. 2013. Mixel camera - a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging. OSA Optics Express (OE) 21, 9 (2013), 11057--11077.Google ScholarGoogle ScholarCross RefCross Ref
  20. Francisco Imai, Lawrence Taplin, and Ellen Day. 2002. Comparison of the accuracy of various transformations from multi-band images to reflectance spectra. Technical Report ISO 12233:2000. Rochester Institute of Technology.Google ScholarGoogle Scholar
  21. Daniel S. Jeon, Inchang Choi, and Min H. Kim. 2016. Multisampling Compressive Video Spectroscopy. Computer Graphics Forum 35, 2 (2016), 467--477.Google ScholarGoogle ScholarCross RefCross Ref
  22. Min H Kim. 2013. 3D Graphics Techniques for Capturing and Inspecting Hyperspectral Appearance. In Ubiquitous Virtual Reality (ISUVR), 2013 Int. Symp. on. IEEE, 15--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Min H. Kim, Todd Alan Harvey, David S. Kittle, Holly Rushmeier, Julie Dorsey, Richard O. Prum, and David J. Brady. 2012a. 3D Imaging Spectroscopy for Measuring Hyperspectral Patterns on Solid Objects. ACM Trans. Graph. (TOG) 31, 4 (2012), 38:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Min H. Kim, Holly Rushmeier, John ffrench, and Irma Passeri. 2012b. Developing Open-Source Software for Art Conservators. In VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage. Eurographics Association, Brighton, England, 97--104.Google ScholarGoogle Scholar
  25. Min H. Kim, Holly Rushmeier, John ffrench, Irma Passeri, and David Tidmarsh. 2014. Hyper3D: 3D Graphics Software for Examining Cultural Artifacts. ACM Journal on Computing and Cultural Heritage 7, 3 (2014), 1:1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. In The International Conference on Learning Representations (ICLR).Google ScholarGoogle Scholar
  27. David Kittle, Kerkil Choi, Ashwin Wagadarikar, and David J Brady. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Applied Optics (AO) 49, 36 (2010), 6824--6833.Google ScholarGoogle ScholarCross RefCross Ref
  28. Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. 2016. ReconNet: Non-Iterative Reconstruction of Images From Compressively Sensed Measurements. In The IEEE Conf. Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  29. HaebomLee and Min H. Kim. 2014. Building a Two-Way Hyperspectral Imaging System with Liquid Crystal Tunable Filters. In Proc. Int. Conf. Image and Signal Processing (ICISP). 26--34.Google ScholarGoogle Scholar
  30. Biao Leng, Shuang Guo, Xiangyang Zhang, and Zhang Xiong. 2015. 3D object retrieval with stacked local convolutional autoencoder. Signal Processing 112 (2015), 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chengbo Li, Ting Sun, Kevin F. Kelly, and Yin Zhang. 2012. A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing. IEEE Trans. Image Processing (TIP) 21, 3 (2012), 1200--1210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yunsong Li, Weiying Xie, and Huaqing Li. 2017. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognition (PR) 63 (2017), 371 -- 383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xing Lin, Yebin Liu, Jiamin Wu, and Qionghai Dai. 2014. Spatial-spectral Encoded Compressive Hyperspectral Imaging. ACM Trans. Graph. (TOG) 33, 6 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhouhan Lin, Yushi Chen, Xing Zhao, and Gang Wang. 2013. Spectral-spatial classification of hyperspectral image using autoencoders. In Proc. Int. Conf. Signal Process. Commun. 1--5.Google ScholarGoogle Scholar
  35. Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully Convolutional Networks for Semantic Segmentation. In Proc. IEEE Conf. Comput. Vis. Pattern. Recognit. (CVPR). 3431--3440.Google ScholarGoogle ScholarCross RefCross Ref
  36. Xiaorui Ma, Hongyu Wang, and Jie Geng. 2016. Spectral-Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 9 (2016), 4073--4085.Google ScholarGoogle ScholarCross RefCross Ref
  37. Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. 2016. Convolutional Neural Networks for Large-Scale Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. (2016), 645 -- 657.Google ScholarGoogle Scholar
  38. Alkhazur Manakov, John F Restrepo, Oliver Klehm, Ramon Hegedüs, Elmar Eisemann, Hans-Peter Seidel, and Ivo Ihrke. 2013. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging. ACM Trans. Graph. (Proc. SIGGRAPH 2013) 32, 4 (2013), 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Julio Marco, Quercus Hernandez, Adolfo MuÃśoz, Yue Dong, Adrian Jarabo, Min Kim, Xin Tong, and Diego Gutierrez. 2017. DeepToF: Off-the-Shelf Real-time Correction of Multipath Interference in Time-of-Flight Imaging. ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2017) 36, 6 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Gabriel Martin, Jose M. Bioucas-Dias, and Antonio J. Plaza. 2015. HYCA: A New Technique for Hyperspectral Compressive Sensing. IEEE Trans. Geoscience and Remote Sensing 53, 5 (2015), 2819--2831.Google ScholarGoogle ScholarCross RefCross Ref
  41. Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked convolutional auto-encoders for hierarchical feature extraction. In Proc. Int. Conf. Artificial Neural Networks (ICANN). 52--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yi Peng, Deyu Meng, Zongben Xu, Chenqiang Gao, Yi Yang, and Biao Zhang. 2014. Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image De-noising. In Proc. IEEE Conf. Comput. Vis. Pattern. Recognit. (CVPR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wallace M Porter and Harry T Enmark. 1987. A system overview of the airborne visible/infrared imaging spectrometer (AVIRIS). In Technical Symposium. International Society for Optics and Photonics, 22--31.Google ScholarGoogle ScholarCross RefCross Ref
  44. Ajit Rajwade, David Kittle, Tsung-Han Tsai, David Brady, and Lawrence Carin. 2013. Coded Hyperspectral Imaging and Blind Compressive Sensing. SIAM Journal on Imaging Sciences 6, 2 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  45. Konstantinos Rapantzikos and Costas Balas. 2005. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In Proc. IEEE Int. Conf. Image Processing (ICIP), Vol. 2. IEEE, II--618.Google ScholarGoogle ScholarCross RefCross Ref
  46. K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proc. Int. Conf. Learning Representation (ICLR).Google ScholarGoogle Scholar
  47. Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. 2014. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In Proc. IEEE Conf. Comput. Vis. Pattern. Recognit. (CVPR). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371--3408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. J. J. Vos. 1978. Colorimetric and photometric properties of a 2-deg fundamental observer. Color Res. Appl. 3 (1978), 125--128.Google ScholarGoogle ScholarCross RefCross Ref
  50. Ashwin Wagadarikar, Renu John, Rebecca Willett, and David Brady. 2008. Single disperser design for coded aperture snapshot spectral imaging. OSA Applied Optics (AO) 47, 10 (2008), B44--B51.Google ScholarGoogle ScholarCross RefCross Ref
  51. Lizhi Wang, Zhiwei Xiong, Dahua Gao, Guangming Shi, Wenjun Zeng, and Feng Wu. 2015. High-Speed Hyperspectral Video Acquisition With a Dual-Camera Architecture. In Proc. IEEE Conf. Comput. Vis. Pattern. Recognit. (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  52. S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. 2009. Sparse reconstruction by separable approximation. IEEE TSP 57, 7 (2009), 2479--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yuehao Wu, Iftekhar O Mirza, Gonzalo R Arce, and Dennis W Prather. 2011. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. OSA Optics Letters (OL) 36, 14 (2011), 2692--4.Google ScholarGoogle ScholarCross RefCross Ref
  54. Chen Xing, Li Ma, and Xiaoquan Yang. 2016. Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images. Journal of Sensors 2016 (2016), 1--10.Google ScholarGoogle Scholar
  55. F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar. 2010. Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum. IEEE Trans. Image Processing (TIP) 19, 9 (Sept 2010), 2241--2253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Jaime Zabalza, Jinchang Ren, Jiangbin Zheng, Huimin Zhao, Chunmei Qing, Zhijing Yang, Peijun Du, and Stephen Marshall. 2016. Novel Segmented Stacked Autoencoder for Effective Dimensionality Reduction and Feature Extraction in Hyperspectral Imaging. Neurocomputing 214 (2016), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Qiang Zhang, Robert Plemmons, David Kittle, David Brady, and Sudhakar Prasad. 2011. Joint segmentation and reconstruction of hyperspectral data with compressed measurements. OSA Applied Optics (AO) 50, 22 (2011), 4417--4435.Google ScholarGoogle ScholarCross RefCross Ref
  58. Yuting Zhang, Kibok Lee, and Honglak Lee. 2016. Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification. In Proc. International Conference on Machine Learning (ICML). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. High-quality hyperspectral reconstruction using a spectral prior

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 6
      December 2017
      973 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3130800
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 November 2017
      Published in tog Volume 36, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader