skip to main content
10.1145/3132211.3134458acmconferencesArticle/Chapter ViewAbstractPublication PagessecConference Proceedingsconference-collections
research-article
Open Access

An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance

Published:12 October 2017Publication History

ABSTRACT

An emerging class of interactive wearable cognitive assistance applications is poised to become one of the key demonstrators of edge computing infrastructure. In this paper, we design seven such applications and evaluate their performance in terms of latency across a range of edge computing configurations, mobile hardware, and wireless networks, including 4G LTE. We also devise a novel multi-algorithm approach that leverages temporal locality to reduce end-to-end latency by 60% to 70%, without sacrificing accuracy. Finally, we derive target latencies for our applications, and show that edge computing is crucial to meeting these targets.

References

  1. Fractional-ball aiming. http://billiards.colostate.edu/threads/aiming.html#fractional. Accessed on November 27, 2015.Google ScholarGoogle Scholar
  2. A. I. Anam, S. Alam, and M. Yeasin. Expression: A dyadic conversation aid using google glass for people with visual impairments. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pages 211--214. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing, 8(1):121--164, 2012. Google ScholarGoogle Scholar
  4. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence, 19(7):711--720, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog Computing and Its Role in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. J. Bootsma and P. C. Van Wieringen. Timing an attacking forehand drive in table tennis. Journal of experimental psychology: Human perception and performance, 16(1):21, 1990. Google ScholarGoogle ScholarCross RefCross Ref
  7. L. Breiman. Bagging predictors. Machine learning, 24(2):123--140, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Brown. Converging Telecom & IT in the LTE RAN. White Paper, Heavy Reading, February 2013.Google ScholarGoogle Scholar
  9. K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.Google ScholarGoogle Scholar
  10. K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards wearable cognitive assistance. In Proceedings of the 12th annual international conference on Mobile systems, applications, and services, pages 68--81. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770--778, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  12. C. Ho and C. Spence. Verbal interface design: Do verbal directional cues automatically orient visual spatial attention? Computers in Human Behavior, 22(4):733--748, 2006. Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Hodges, E. Berry, and K. Wood. SenseCam: A wearable camera that stimulates and rehabilitates autobiographical memory. Memory, 19(7):685--696, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  14. E. Iarussi, A. Bousseau, and T. Tsandilas. The drawing assistant: Automated drawing guidance and feedback from photographs. In ACM Symposium on User Interface Software and Technology (UIST), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.Google ScholarGoogle Scholar
  16. M. Kampf, I. Nachson, and H. Babkoff. A serial test of the laterality of familiar face recognition. Brain and Cognition, 50(1):35--50, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  17. Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1--8, 2007. Google ScholarGoogle ScholarCross RefCross Ref
  18. D. E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10:1755--1758, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. L. Klatzky, P. Gershon, V. Shivaprabhu, R. Lee, B. Wu, G. Stetten, , and R. H. Swendsen. A model of motor performance during surface penetration: from physics to voluntary control. Experimental brain research, 230(2):251--260, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages 1--14. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. McFarling. Combining branch predictors. Technical report, Technical Report TN-36, Digital Western Research Laboratory, 1993.Google ScholarGoogle Scholar
  22. R. B. Miller. Response time in man-computer conversational transactions. December 9--11, 1968, fall joint computer conference, part I, ACM, pages 267--277, December 1968.Google ScholarGoogle Scholar
  23. OpenStack. http://www.openstack.org/, February 2015.Google ScholarGoogle Scholar
  24. S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345--1359, October 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Parasuraman and D. R. Davies. Decision theory analysis of response latencies in vigilance. Journal of Experimental Psychology: Human Perception and Performance, 2(4):578, 1976. Google ScholarGoogle ScholarCross RefCross Ref
  26. D. J. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson, S. Wang, D. Fox, and H. Kautz. Opportunity knocks: A system to provide cognitive assistance with transportation services. In UbiComp 2004: Ubiquitous Computing, pages 433--450. Springer, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Ramon, S. Caharel, and B. Rossion. The speed of recognition of personally familiar faces. Perception, 40(4):437--449, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. arXiv preprint arXiv:1603.05279, 2016.Google ScholarGoogle Scholar
  29. S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91--99, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4), October-December 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Schmitt, A. Postma, and E. De Haan. Interactions between exogenous auditory and visual spatial attention. The Quarterly Journal of Experimental Psychology: Section A, 53(1):105--130, 2000. Google ScholarGoogle ScholarCross RefCross Ref
  32. L. Shangguan, Z. Yang, Z. Zhou, X. Zheng, C. Wu, and Y. Liu. Cross-navi: enabling real-time crossroad navigation for the blind with commodity phones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 787--798. ACM, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.Google ScholarGoogle Scholar
  34. T. J. Tang and W. H. Li. An assistive eyewear prototype that interactively converts 3d object locations into spatial audio. In Proceedings of the 2014 ACM International Symposium on Wearable Computers, pages 119--126. ACM, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel. Chroma: a wearable augmented-reality solution for color blindness. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 799--810. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. J. Tarr, D. Kersten, and H. H. Bülthoff. Why the visual recognition system might encode the effects of illumination. Vision research, 38(15):2259--2275, 1998. Google ScholarGoogle ScholarCross RefCross Ref
  37. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I--I. IEEE, 2001. Google ScholarGoogle ScholarCross RefCross Ref
  38. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818--833. Springer, 2014. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in
                • Published in

                  cover image ACM Conferences
                  SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge Computing
                  October 2017
                  365 pages
                  ISBN:9781450350877
                  DOI:10.1145/3132211

                  Copyright © 2017 Owner/Author

                  Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 12 October 2017

                  Check for updates

                  Qualifiers

                  • research-article

                  Acceptance Rates

                  SEC '17 Paper Acceptance Rate20of41submissions,49%Overall Acceptance Rate40of100submissions,40%

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader