skip to main content
10.1145/3152771.3152800acmotherconferencesArticle/Chapter ViewAbstractPublication PagesozchiConference Proceedingsconference-collections
research-article

Evaluation of labelling layout method for image-driven view management in augmented reality

Authors Info & Claims
Published:28 November 2017Publication History

ABSTRACT

View management techniques are commonly used for the optimization of labelling layout of objects in augmented reality systems, in which penalty function is an effective method to get the optimal positions of labels. In this paper, an image-driven view management method to superimpose 2D labels to the objects under indoor environments such as sculpture and toy by minimizing penalty function is studied. A new penalty function is proposed to change the orientation of each leader line in the penalty elements and a modified search space method is integrated to improve the quality of labelling layout. Experiments are conducted to evaluate the labelling layout optimized by different penalty functions under different experiment conditions and the comparison of experimental results between different penalty functions shows that the proposed method represents the best results in terms of avoiding occlusion and efficiency to get the optimal layout.

References

  1. Madsen, J. B., Tatzqern, M., Madsen, C. B., Schmalstieg, D., & Kalkofen, D. 2016. Temporal coherence strategies for augmented reality labeling. IEEE transactions on visualization and computer graphics, 22(4), 1415--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M., & Schmalstieg, D. 2012. Image-driven view management for augmented reality browsers. In Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on (pp. 177--186). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bell, B., Feiner, S., & Höllerer, T. 2001. View management for virtual and augmented reality. In Proceedings of the 14th annual ACM symposium on User interface software and technology (pp. 101--110). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Marks, J., & Shieber, S. M. 1991. The computational complexity of cartographic label placement.Google ScholarGoogle Scholar
  5. Ali, K., Hartmann, K., & Strothotte, T. 2005. Label layout for interactive 3D illustrations.Google ScholarGoogle Scholar
  6. Zhang, F., & Sun, H. 2005. Dynamic labeling management in virtual and augmented environments. In Computer Aided Design and Computer Graphics, 2005. Ninth International Conference on (pp. 6-pp). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tatzgern, M., Kalkofen, D., Grasset, R., & Schmalstieg, D. 2014. Hedgehog labeling: View management techniques for external labels in 3D space. In Virtual Reality (VR), 2014 iEEE (pp. 27--32). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  8. Vollick, I., Vogel, D., Agrawala, M., & Hertzmann, A. 2007. Specifying label layout style by example. In Proceedings of the 20th annual ACM symposium on User interface software and technology (pp. 221--230). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hartmann, K., Ali, K., & Strothotte, T. 2004. Floating labels: Applying dynamic potential fields for label layout. In Smart Graphics (pp. 101--113). Springer Berlin/Heidelberg.Google ScholarGoogle Scholar
  10. Makita, K., Kanbara, M., & Yokoya, N. 2009. View management of annotations for wearable augmented reality. In Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on (pp. 982--985). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Rosten, E., Reitmayr, G., & Drummond, T. 2005. Real-time video annotations for augmented reality. Advances in Visual Computing, 294--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Shibata, F., Nakamoto, H., Sasaki, R., Kimura, A., & Tamura, H. 2008. A View Management Method for Mobile Mixed Reality Systems. In IPT/EGVE(pp. 17--24). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Azuma, R., & Furmanski, C. 2003. Evaluating label placement for augmented reality view management. In Proceedings of the 2nd IEEE/ACM international Symposium on Mixed and Augmented Reality (p. 66). IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Peterson, S. D., Axholt, M., & Ellis, S. R. 2008. Label segregation by remapping stereoscopic depth in far-field augmented reality. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (pp. 143--152). IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Peterson, S., Axholt, M., & Ellis, S. R. 2008. Managing visual clutter: A generalized technique for label segregation using stereoscopic disparity. In Virtual Reality Conference, 2008. VR'08. IEEE (pp. 169--176). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  16. Peterson, S. D., Axholt, M., Cooper, M., & Ellis, S. R. 2009. Visual clutter management in augmented reality: Effects of three label separation methods on spatial judgments. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on (pp. 111--118). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Achanta, R., & Süsstrunk, S. 2010. Saliency detection using maximum symmetric surround. In Image processing (ICIP), 2010 17th IEEE international conference on (pp. 2653--2656). IEEE.Google ScholarGoogle Scholar
  18. Orlosky, J., Kiyokawa, K., Toyama, T., & Sonntag, D. 2015. Halo content: Context-aware viewspace management for non-invasive augmented reality. In Proceedings of the 20th International Conference on Intelligent User Interfaces (pp. 369--373). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Langlotz, T., Nguyen, T., Schmalstieg, D., & Grasset, R. 2014. Next-generation augmented reality browsers: rich, seamless, and adaptive. Proceedings of the IEEE, 102(2), 155--169.Google ScholarGoogle ScholarCross RefCross Ref
  20. Gabbard, J. L., Swan, J. E., Hix, D., Schulman, R. S., Lucas, J., & Gupta, D. 2005. An empirical user-based study of text drawing styles and outdoor background textures for augmented reality. In Virtual Reality, 2005. Proceedings. VR 2005. IEEE (pp. 11--18). IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gabbard, J. L., Swan, J. E., Hix, D., Kim, S. J., & Fitch, G. 2007. Active text drawing styles for outdoor augmented reality: A user-based study and design implications. In Virtual Reality Conference, 2007. VR'07. IEEE(pp. 35--42). IEEE.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Evaluation of labelling layout method for image-driven view management in augmented reality

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      OzCHI '17: Proceedings of the 29th Australian Conference on Computer-Human Interaction
      November 2017
      678 pages
      ISBN:9781450353793
      DOI:10.1145/3152771

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 November 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      OzCHI '17 Paper Acceptance Rate74of157submissions,47%Overall Acceptance Rate362of729submissions,50%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader