skip to main content
research-article

Discrete Temporal Constraint Satisfaction Problems

Authors Info & Claims
Published:06 February 2018Publication History
Skip Abstract Section

Abstract

A discrete temporal constraint satisfaction problem is a constraint satisfaction problem (CSP) over the set of integers whose constraint language consists of relations that are first-order definable over the order of the integers. We prove that every discrete temporal CSP is in P or NP-complete, unless it can be formulated as a finite domain CSP, in which case the computational complexity is not known in general.

References

  1. Marc Bezem, Robert Nieuwenhuis, and Enric Rodríguez-Carbonell. 2008. The max-atom problem and its relevance. In Proceedings of the International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’08). 47--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Manuel Bodirsky. 2012. Complexity Classification in Infinite-Domain Constraint Satisfaction. (2012). Mémoire d’habilitation à diriger des recherches, Université Diderot, Paris 7. arXiv:1201.0856.Google ScholarGoogle Scholar
  3. Manuel Bodirsky, Víctor Dalmau, Barnaby Martin, Antoine Mottet, and Michael Pinsker. 2016. Distance constraint satisfaction problems. Inf. Comput. 247 (Apr. 2016), 87--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Manuel Bodirsky, Martin Hils, and Barnaby Martin. 2012. On the scope of the universal-algebraic approach to constraint satisfaction. Logic. Methods Comput. Sci. 8, 3:13 (2012).Google ScholarGoogle Scholar
  5. Manuel Bodirsky and Jan Kára. 2009. The complexity of temporal constraint satisfaction problems. J. ACM 57, 2 (2009), 1--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Manuel Bodirsky and Antoine Mottet. 2016. Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction. In Proceedings of the 31th Annual IEEE Symposium on Logic in Computer Science (LICS’16). 623--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Manuel Bodirsky and Jaroslav Nešetřil. 2006. Constraint satisfaction with countable homogeneous templates. J. Logic Comput. 16, 3 (2006), 359--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Manuel Bodirsky and Michael Pinsker. 2015. Schaefer’s theorem for graphs. J. ACM 62, 3 (2015), 52 pages (article number 19). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. 1969. Galois theory for post algebras, part I and II. Cybernetics 5, 3 (1969), 243--539.Google ScholarGoogle ScholarCross RefCross Ref
  10. Andrei A. Bulatov. 2017. A dichotomy theorem for nonuniform CSPs. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’17). arXiv:1703.03021.Google ScholarGoogle ScholarCross RefCross Ref
  11. T.-W. J. Chou and G. E. Collins. 1982. Algorithms for the solution of systems of linear Diophantine equations. SIAM J. Comput. 11 (1982), 687--708.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Andrzej Ehrenfeucht and Jan Mycielski. 1979. Positional strategies for mean payoff games. Int. J. Game Theor. 8, 2 (1979), 109--113.Google ScholarGoogle ScholarCross RefCross Ref
  13. Tomás Feder and Moshe Y. Vardi. 1998. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1 (1998), 57--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. David Geiger. 1968. Closed systems of functions and predicates. Pac. J. Math. 27, 1 (1968), 95--100.Google ScholarGoogle ScholarCross RefCross Ref
  15. Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H-coloring. J. Combin. Theor. Ser. B 48 (1990), 92--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Wilfrid Hodges. 1997. A Shorter Model Theory. Cambridge University Press, Cambridge. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Peter Jeavons, David Cohen, and Marc Gyssens. 1997. Closure properties of constraints. J. ACM 44, 4 (1997), 527--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Peter Jonsson and Tomas Lööw. 2013. Computation complexity of linear constraints over the integers. Artif. Intell. 195 (2013), 44--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dexter Kozen. 1983. Results on the propositional μ-calculus. Theoret. Comput. Sci. 27, 3 (1983), 333--354.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. K. Mackworth. 1977. Consistency in networks of relations. Artif. Intell. 8, 1 (1977), 99--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rolf H. Möhring, Martin Skutella, and Frederik Stork. 2004. Scheduling with AND/OR precedence constraints. SIAM J. Comput. 33, 2 (2004), 393--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Arash Rafiey, Jeff Kinne, and Tomás Feder. 2017. Dichotomy for Digraph Homomorphism Problems. (2017). arXiv:1701.02409.Google ScholarGoogle Scholar
  23. Dmitriy Zhuk. 2017. The proof of CSP dichotomy conjecture. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’17). arXiv:1704.01914.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Discrete Temporal Constraint Satisfaction Problems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal of the ACM
          Journal of the ACM  Volume 65, Issue 2
          April 2018
          244 pages
          ISSN:0004-5411
          EISSN:1557-735X
          DOI:10.1145/3184466
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 February 2018
          • Accepted: 1 October 2017
          • Revised: 1 June 2017
          • Received: 1 September 2016
          Published in jacm Volume 65, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader