skip to main content
survey

Integrated NFV/SDN Architectures: A Systematic Literature Review

Published:04 February 2019Publication History
Skip Abstract Section

Abstract

Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) are new paradigms in the move towards open software and network hardware. While NFV aims to virtualize network functions and deploy them into general purpose hardware, SDN makes networks programmable by separating the control and data planes. NFV and SDN are complementary technologies capable of providing one network solution. SDN can provide connectivity between Virtual Network Functions (VNFs) in a flexible and automated way, whereas NFV can use SDN as part of a service function chain. There are many studies designing NFV/SDN architectures in different environments. Researchers have been trying to address reliability, performance, and scalability problems using different architectural designs. This Systematic Literature Review (SLR) focuses on integrated NFV/SDN architectures, with the following goals: (i) to investigate and provide an in-depth review of the state of the art of NFV/SDN architectures, (ii) to synthesize their architectural designs, and (iii) to identify areas for further improvements. Broadly, this SLR will encourage researchers to advance the current stage of development (i.e., the state of the practice) of integrated NFV/SDN architectures and shed some light on future research efforts and the challenges faced.

Skip Supplemental Material Section

Supplemental Material

References

  1. ETSI. 2012. Network functions virtualisation—An introduction, benefits, enablers, challenges and call for action. White Paper (Out. 2012).Google ScholarGoogle Scholar
  2. ETSI. 2015. Network functions virtualisation (NFV)—Network operator perspectives on industry progress. White Paper (Jan. 2015).Google ScholarGoogle Scholar
  3. Róbert Szabó, Mario Kind, Fritz-joachim Westphal, Hagen Woesner, Dávid Jocha, and András Császar. 2015. Elastic network functions: Opportunities and challenges. IEEE Netw. 29, 3 (Jun. 2015), 15--21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 69--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. 2015. Software-defined networking: A comprehensive survey. Proc. IEEE 103, 1 (Jan. 2015), 14--76.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba. 2016. Network function virtualization: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 18, 1 (2016), 236--262.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Daniel M. Batista, Gordon Blair, Fabio Kon, Raouf Boutaba, David Hutchison, Raj Jain, Ramachandran Ramjee, and Christian Esteve Rothenberg. 2015. Perspectives on software-defined networks: Interviews with five leading scientists from the networking community. J. Internet Serv. Appl. 6, 1 (2015), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. d. J. Gil Herrera and J. F. Botero Vega. 2016. Network functions virtualization: A survey. IEEE Latin Am. Trans. 14, 2 (Feb. 2016), 983--997.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y. Li and M. Chen. 2015. Software-defined network function virtualization: A survey. IEEE Access 3 (2015), 2542--2553.Google ScholarGoogle ScholarCross RefCross Ref
  10. L. I. Barona López, Á L. Valdivieso Caraguay, L. J. García Villalba, and D. López. 2015. Trends on virtualisation with software defined networking and network function virtualisation. IET Netw. 4, 5 (2015), 255--263.Google ScholarGoogle ScholarCross RefCross Ref
  11. Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 51, 1 (2009), 7--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Barbara Kitchenham. 2004. Procedures for Performing Systematic Reviews. Technical Report TR/SE-0401. Keele University, Keele.Google ScholarGoogle Scholar
  13. ETSI. 2014. Network functions virtualisation (NFV)—Architectural framework. ETSI GS NFV 002 V1.2.1 (Dec. 2014).Google ScholarGoogle Scholar
  14. ONF. 2015. OpenFlow Switch Specification, Version 1.3.5.Google ScholarGoogle Scholar
  15. ETSI. 2015. Network functions virtualisation (NFV), Ecosystem: Report on SDN usage in NFV architectural framework. ETSI GS NFV-EVE 005 V1.1.1Google ScholarGoogle Scholar
  16. G. Carella, J. Yamada, N. Blum, C. Lück, N. Kanamaru, N. Uchida, and T. Magedanz. 2015. Cross-layer service to network orchestration. In Proceedings of the 2015 IEEE International Conference on Communications (ICC’15). 6829--6835.Google ScholarGoogle Scholar
  17. Fraunhofer FOKUS. 2016. OpenSDNCore—Reasearch and testbed for the carrier-grade nfv/sdn environment. Retrieved July 25, 2016 from http://www.opensdncore.org/.Google ScholarGoogle Scholar
  18. Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. 2012. Making middleboxes someone else’s problem: Network processing as a cloud service. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM’12). ACM, New York, NY, 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros. 2015. Container-based network function virtualization for software-defined networks. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC’15). 415--420. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. SK Telecom, Hewlett Packard, Samsung, and Telcoware. 2014. PoC#23—E2E Orchestration of Virtualized LTE Core-network Functions and SDN-based Dynamic Service Chaining of VNFs Using VNF FG. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  21. J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin. 2013. On the implementation of NFV over an OpenFlow infrastructure: Routing function virtualization. In Proceedings of the IEEE SDN for Future Networks and Services (SDN4FNS’13). 1--6.Google ScholarGoogle Scholar
  22. Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan Schmid, and Anja Feldmann. 2015. OpenSDWN: Programmatic control over home and enterprise WiFi. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR’15). ACM, New York, NY, 16:1--16:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Y. D. Lin, P. C. Lin, C. H. Yeh, Y. C. Wang, and Y. C. Lai. 2015. An extended SDN architecture for network function virtualization with a case study on intrusion prevention. IEEE Netw. 29, 3 (2015), 48--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Sonkoly, R. Szabo, D. Jocha, J. Czentye, M. Kind, and F. J. Westphal. 2015. UNIFYing cloud and carrier network resources: An architectural view. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM’15). 1--7.Google ScholarGoogle Scholar
  25. J. Deng, H. Hu, H. Li, Z. Pan, K. C. Wang, G. J. Ahn, J. Bi, and Y. Park. 2015. VNGuard: An NFV/SDN combination framework for provisioning and managing virtual firewalls. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN’15). 107--114.Google ScholarGoogle Scholar
  26. R. Cziva, S. Jouet, and D. P. Pezaros. 2015. GNFC: Towards network function cloudification. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN’15). 142--148.Google ScholarGoogle Scholar
  27. S. Van Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet, and P. Demeester. 2015. Deploying elastic routing capability in an SDN/NFV-enabled environment. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN’15). 22--24.Google ScholarGoogle Scholar
  28. F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea. 2015. Implementing dynamic chaining of virtual network functions in OpenStack platform. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON’15). 1--4.Google ScholarGoogle Scholar
  29. R. Cziva and D. P. Pezaros. 2017. Container network functions: Bringing NFV to the network edge. IEEE Commun. Mag. 55, 6 (2017), 24--31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Docker Inc. 2016. Docker Documentation. Retrieved July 25, 2016 from https://docs.docker.com/.Google ScholarGoogle Scholar
  31. Rackspace Cloud Computing. 2016. OpenStack Open Source Cloud Computing Software. Retrieved July 25, 2016 from https://www.openstack.org/.Google ScholarGoogle Scholar
  32. Linux Foundation. 2016. The OpenDaylight Plataform. Retrieved July 25, 2016 from http://www.opendaylight.org.Google ScholarGoogle Scholar
  33. NOXRepo.org. 2016. The POX Controller. Retrieved July 25, 2016 from http://www.noxrepo.org/pox/about-pox/.Google ScholarGoogle Scholar
  34. ETSI. 2013. Network functions virtualisation (NFV)—Use cases. ETSI GS NFV 001 V1.1.1 (Out. 2013).Google ScholarGoogle Scholar
  35. Ivano Cerrato, Alex Palesandro, Fulvio Risso, Marc Suñé, Vinicio Vercellone, and Hagen Woesner. 2015. Toward dynamic virtualized network services in telecom operator networks. Comput. Netw. 92, 2 (2015), 380--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yuri Gittik. 2014. White article—Distributed network functions virtualization (RAD).Google ScholarGoogle Scholar
  37. J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento. 2014. Cloud4NFV: A platform for virtual network functions. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet’14). 288--293.Google ScholarGoogle Scholar
  38. J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L. Aguiar, and S. Sargento. 2015. Toward a telco cloud environment for service functions. IEEE Commun. Mag. 53, 2 (2015), 98--106.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann. 2017. Unified programmability of virtualized network functions and software-defined wireless networks. IEEE Trans. Netw. Service Manage. 14, 4 (2017), 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa Vazao. 2012. Towards programmable enterprise WLANS with odin. In Proceedings of the 1st Workshop on Hot Topics in Software Defined Networks (HotSDN’12). ACM, New York, NY, 115--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Vestin and A. Kassler. 2015. QoS enabled WiFi MAC layer processing as an example of a NFV service. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--9.Google ScholarGoogle Scholar
  42. P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo. 2012. CloudMAC: An OpenFlow based architecture for 802.11 MAC layer processing in the cloud. In Proceedings of the 2012 IEEE Globecom Workshops. 186--191.Google ScholarGoogle Scholar
  43. A. Gupta and R. K. Jha. 2015. A survey of 5G network: Architecture and emerging technologies. IEEE Access 3 (2015), 1206--1232.Google ScholarGoogle ScholarCross RefCross Ref
  44. 2017. ITU towards “IMT for 2020 and beyond.” Retrieved September 28, 2017 from http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx.Google ScholarGoogle Scholar
  45. 2017. Verizon 5G Technical Forum. Retrieved September 28, 2017 from http://www.5gtf.org/.Google ScholarGoogle Scholar
  46. 2017. 5G Infrastructure Public Private Partnership--5G PPP. Retrieved September 28, 2017 https://5g-ppp.eu/.Google ScholarGoogle Scholar
  47. 5G PPP Architecture Working Group. 2016. View on 5G Architecture. Technical Report.Google ScholarGoogle Scholar
  48. 5G PPP Architecture Working Group. 2016. 5G PPP Use Cases and Performance Evaluation Models. Technical Report.Google ScholarGoogle Scholar
  49. Huawei Technologies. 2015. 5G Network Architecture-A High Level View. Technical Report.Google ScholarGoogle Scholar
  50. 5G PPP Architecture Working Group. 2017. Vision on Software Networks and 5G. Technical Report.Google ScholarGoogle Scholar
  51. Y. Kyung, T. M. Nguyen, K. Hong, J. Park, and J. Park. 2015. Software defined service migration through legacy service integration into 4G networks and future evolutions. IEEE Commun. Mag. 53, 9 (Sep. 2015), 108--114.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Telecom Italia, Nokia Networks, EXFO, Coriant, and Aalto University. 2015. PoC#26—Virtual EPC with SDN Function in Mobile Backhaul Networks. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  53. China Unicom, ZTE Corporation, and Hewlett-Packard. 2015. PoC#27—VoLTE Service Based on vEPC and vIMS Architecture. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  54. E. Haleplidis, D. Joachimpillai, J. H. Salim, D. Lopez, J. Martin, K. Pentikousis, S. Denazis, and O. Koufopavlou. 2014. ForCES applicability to SDN-enhanced NFV. In Proceedings of the 2014 3rd European Workshop on Software Defined Networks. 43--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Arsany Basta, Andreas Blenk, Marco Hoffmann, Hans Jochen Morper, Klaus Hoffmann, and Wolfgang Kellerer. 2014. SDN and NFV dynamic operation of LTE EPC gateways for time-varying traffic patterns. In Mobile Networks and Management, Ramón Agüero, Thomas Zinner, Rossitza Goleva, Andreas Timm-Giel, and Phuoc Tran-Gia (Eds.). Number 141 in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, 63--76.Google ScholarGoogle Scholar
  56. V. G. Nguyen and Y. H. Kim. 2014. Slicing the next mobile packet core network. In Proceedings of the 2014 11th International Symposium on Wireless Communications Systems (ISWCS’14). 901--904.Google ScholarGoogle Scholar
  57. J. Costa-Requena, J. L. Santos, V. F. Guasch, K. Ahokas, G. Premsankar, S. Luukkainen, O. L. Pérez, M. U. Itzazelaia, I. Ahmad, M. Liyanage, M. Ylianttila, and E. M. de Oca. 2015. SDN and NFV integration in generalized mobile network architecture. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC’15). 154--158.Google ScholarGoogle ScholarCross RefCross Ref
  58. A. M. Medhat, G. Carella, J. Mwangama, and N. Ventura. 2015. Multi-tenancy for virtualized network functions. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--6.Google ScholarGoogle Scholar
  59. I. Ahmad, M. Liyanage, S. Namal, M. Ylianttila, A. Gurtov, M. Eckert, T. Bauschert, Z. Faigl, L. Bokor, E. Saygun, O. L. Akyildiz, H. A. and, M. U. Itzazelaia, B. Ozbek, and A. Ulas. 2016. New concepts for traffic, resource and mobility management in software-defined mobile networks. In Proceedings of the 2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS’16). 1--8.Google ScholarGoogle Scholar
  60. A. Tawbeh, H. Safa, and A. R. Dhaini. 2017. A hybrid SDN/NFV architecture for future LTE networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC’17). 1--6.Google ScholarGoogle Scholar
  61. X. An, W. Kiess, and D. Perez-Caparros. 2014. Virtualization of cellular network EPC gateways based on a scalable SDN architecture. In Proceedings of the 2014 IEEE Global Communications Conference. 2295--2301.Google ScholarGoogle Scholar
  62. Telefonica, Vodafone, Radware, HP, and Melanox. 2016. PoC#13—SteerFlow: Multi-Layered Traffic Steering for Gi-LAN. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  63. Telenor, Vodafone, Hewlett Packard Enterprise, ImVision Tech, Mavenir, Redhat, and Altiostar. 2016. PoC#34—SDN Enabled Virtual EPC Gateway. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  64. P. Grønsund, K. Mahmood, G. Millstein, A. Noy, G. Solomon, and A. Sahai. 2015. A solution for SGi-LAN services virtualization using NFV and SDN. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC’15). 408--412.Google ScholarGoogle Scholar
  65. J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira. 2017. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges. IEEE Commun. Mag. 55, 5 (May 2017), 80--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. R. Munoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. Lopez, and D. Lopez. 2015. Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks {invited}. IEEE/OSA J. Opt. Commun. Netw. 7, 11 (Nov. 2015), B62--B70.Google ScholarGoogle ScholarCross RefCross Ref
  67. R. Muñoz, R. Vilalta, R. Casellas, R. Martínez, T. Szyrkowiec, A. Autenrieth, V. López, and D. López. 2015. SDN/NFV orchestration for dynamic deployment of virtual SDN controllers as VNF for multi-tenant optical networks. In Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC’15), 2015. 1--3.Google ScholarGoogle ScholarCross RefCross Ref
  68. R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez. 2015. The SDN/NFV cloud computing platform and transport network of the ADRENALINE testbed. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--5.Google ScholarGoogle Scholar
  69. R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez. 2015. Multi-tenant transport networks with SDN/NFV. In Proceedings of the 2015 European Conference on Optical Communication (ECOC’15). 1--3.Google ScholarGoogle Scholar
  70. R. Vilalta, A. Mayoral, R. Muñoz, R. Casellas, and R. Martínez. 2016. Multitenant transport networks with SDN/NFV. J. Lightwave Technol. 34, 6 (Mar. 2016), 1509--1515.Google ScholarGoogle ScholarCross RefCross Ref
  71. R. Vilalta, A. Mayoral, V. Lopez, V. Uceda, R. Casellas, R. Martinez, R. Munoz, A. Aguado, J. Marhuenda, R. Nejabati, D. Simeonidou, N. Yoshikane, T. Tsuritani, I. Morita, T. Szyrkowiec, and A. Autenrieth. 2016. Peer SDN orchestration: End-to-end connectivity service provisioning through multiple administrative domains. In Proceedings of the 42nd European Conference on Optical Communication (ECOC’16). 1--3.Google ScholarGoogle Scholar
  72. Ian F. Akyildiz, Shih-Chun Lin, and Pu Wang. 2015. Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Comput. Netw. 93, 1 (2015), 66--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. J. Mwangama, N. Ventura, A. Willner, Y. Al-Hazmi, G. Carella, and T. Magedanz. 2015. Towards mobile federated network operators. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--6.Google ScholarGoogle Scholar
  74. R. Casellas, R. Muñoz, R. Vilalta, and R. Martínez. 2016. Orchestration of IT/cloud and networks: From inter-DC interconnection to SDN/NFV 5G services. In Proceedings of the 2016 International Conference on Optical Network Design and Modeling (ONDM’16). 1--6.Google ScholarGoogle Scholar
  75. R. Vilalta, A. Mayoral, R. Casellas, R. Martínez, and R. Muñoz. 2016. SDN/NFV orchestration of multi-technology and multi-domain networks in cloud/fog architectures for 5g services. In Proceedings of the 2016 21st OptoElectronics and Communications Conference (OECC’16) held jointly with 2016 International Conference on Photonics in Switching (PS’16). 1--3.Google ScholarGoogle Scholar
  76. A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, and R. Munoz. 2016. Multi-tenant 5G network slicing architecture with dynamic deployment of virtualized tenant management and orchestration (MANO) instances. In Proceedings of the ECOC 2016; 42nd European Conference on Optical Communication. 1--3.Google ScholarGoogle Scholar
  77. R. Martínez, A. Mayoral, R. Vilalta, R. Casellas, R. Muñoz, S. Pachnicke, T. Szyrkowiec, and A. Autenrieth. 2017. Integrated SDN/NFV orchestration for the dynamic deployment of mobile virtual backhaul networks over a multilayer (packet/optical) aggregation infrastructure. IEEE/OSA J. Opt. Commun. Netw. 9, 2 (Feb. 2017), A135--A142.Google ScholarGoogle ScholarCross RefCross Ref
  78. R. Muñoz, L. Nadal, R. Casellas, M. S. Moreolo, R. Vilalta, J. M. Fàbrega, R. Martínez, A. Mayoral, and F. J. Vílchez. 2017. The ADRENALINE testbed: An SDN/NFV packet/optical transport network and edge/core cloud platform for end-to-end 5G and IoT services. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC’17). 1--5.Google ScholarGoogle Scholar
  79. R. Vilalta, A. Mayoral, R. Casellas, R. Martínez, and R. Muñoz. 2016. Experimental demonstration of distributed multi-tenant cloud/fog and heterogeneous SDN/NFV orchestration for 5G services. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC’16). 52--56.Google ScholarGoogle Scholar
  80. ETSI. 2016. Mobile edge computing (MEC): Technical requirements. ETSI GS MEC 002 v1.1.1 (Mar. 2016).Google ScholarGoogle Scholar
  81. ETSI. 2016. Mobile edge computing (MEC): Framework and reference architecture. ETSI GS MEC 003 v1.1.1 (Mar. 2016).Google ScholarGoogle Scholar
  82. Rodrigo Roman, Javier Lopez, and Masahiro Mambo. 2018. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems 78, 2 (2018), 680--698.Google ScholarGoogle ScholarCross RefCross Ref
  83. 5G PPP Architecture Working Group. 2015. 5G Vision. Technical Report.Google ScholarGoogle Scholar
  84. EU SELFNET Project. 2016. Framework for Self-Organized Network Management in Virtualized and Software Defined Networks, Project reference: ICT-2014-2/671672. Funded under H2020. Retrieved July 25, 2016 from http://www.selfnet-5g.eu/.Google ScholarGoogle Scholar
  85. Pedro Neves, Rui Calé, Mário Rui Costa, Carlos Parada, Bruno Parreira, Jose Alcaraz-Calero, Qi Wang, James Nightingale, Enrique Chirivella-Perez, Wei Jiang, Hans Dieter Schotten, Konstantinos Koutsopoulos, Anastasius Gavras, and Maria João Barros. 2016. The SELFNET approach for autonomic management in an NFV/SDN networking paradigm. Int. J. Distrib. Sen. Netw. 2016, Article 2 (Jan. 2016), 1 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Pedro Neves, Rui Calé, Mário Costa, Gonçalo Gaspar, Jose Alcaraz-Calero, Qi Wang, James Nightingale, Giacomo Bernini, Gino Carrozzo, Ángel Valdivieso, Luis Javier García Villalba, Maria Barros, Anastasius Gravas, José Santos, Ricardo Maia, and Ricardo Preto. 2017. Future mode of operations for 5G—The SELFNET approach enabled by SDN/NFV. Comput. Standards Interfaces 54, Part 4 (2017), 229--246. SI: Standardization SDN 8 NFV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Verizon. 2016. SDN-NFV reference architecture. Verizon Network Infrastructure Planning (Feb. 2016).Google ScholarGoogle Scholar
  88. Telefonica I+D. 2016. OpenMANO - A ETSI NFV compliant Management and Orchestration (MANO). Retrieved July 25, 2016 from https://github.com/nfvlabs/openmano.Google ScholarGoogle Scholar
  89. Fraunhofer FOKUS. 2016. OpenBaton—A ETSI NFV compliant Network Function Virtualization Orchestrator (NFVO). Retrieved July 25, 2016 from http://openbaton.github.io/.Google ScholarGoogle Scholar
  90. Big Switch Networks. 2016. The Floodlight Project. July 25, 2016 from http://www.projectfloodlight.org/floodlight/.Google ScholarGoogle Scholar
  91. Open Network Foundation (ONF). 2017. The ONOS Project. October 2, 2017 from http://onosproject.org/.Google ScholarGoogle Scholar
  92. Nippon Telegraph and Telephone (NTT). 2016. Ryu SDN Framework. Retrieved July 25, 2016 from https://osrg.github.io/ryu/.Google ScholarGoogle Scholar
  93. W. Shen, M. Yoshida, K. Minato, and W. Imajuku. 2015. vConductor: An enabler for achieving virtual network integration as a service. IEEE Commun. Mag. 53, 2 (2015), 116--124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. R. Vilalta, R. Muñoz, A. Mayoral, R. Casellas, R. Martínez, V. López, and D. López. 2015. Transport network function virtualization. J. Lightwave Technol. 33, 8 (Apr. 2015), 1557--1564.Google ScholarGoogle ScholarCross RefCross Ref
  95. A. Mohammadkhan, G. Liu, W. Zhang, K. K. Ramakrishnan, and T. Woodv. 2015. Protocols to support autonomy and control for NFV in software defined networks. In Proceedings of the 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN’15). 163--169.Google ScholarGoogle Scholar
  96. A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and V. Riccobene. 2015. An open framework to enable NetFATE (network functions at the edge). In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--6.Google ScholarGoogle Scholar
  97. L. Mamatas, S. Clayman, and A. Galis. 2015. A service-aware virtualized software-defined infrastructure. IEEE Commun. Mag. 53, 4 (Apr. 2015), 166--174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Q. Duan, N. Ansari, and M. Toy. 2016. Software-defined network virtualization: An architectural framework for integrating SDN and NFV for service provisioning in future networks. IEEE Netw. 30, 5 (Sep. 2016), 10--16.Google ScholarGoogle ScholarCross RefCross Ref
  99. AT&T, Telecom Italia, Netronome, Intel, ServiceMesh, PLUMgrid, and Cisco Systems. 2015. PoC#16—NFVIaaS with Secure, SDN-controlled WAN Gateway. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  100. Linux Foundation. 2016. The Xen Project. Retrieved July 25, 2016 from https://www.xenproject.org/.Google ScholarGoogle Scholar
  101. F. Lucrezia, G. Marchetto, F. Risso, and V. Vercellone. 2015. Introducing network-aware scheduling capabilities in OpenStack. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--5.Google ScholarGoogle Scholar
  102. K. Giotis, Y. Kryftis, and V. Maglaris. 2015. Policy-based orchestration of NFV services in software-defined networks. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft’15). 1--5.Google ScholarGoogle Scholar
  103. W. Ding, W. Qi, J. Wang, and B. Chen. 2015. OpenSCaaS: An open service chain as a service platform toward the integration of SDN and NFV. IEEE Netw. 29, 3 (2015), 30--35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. J. Lai, Q. Fu, and T. Moors. 2015. Rapid IP rerouting with SDN and NFV. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM’15). 1--7.Google ScholarGoogle Scholar
  105. H. Wang, S. Chen, H. Xu, M. Ai, and Y. Shi. 2015. SoftNet: A software defined decentralized mobile network architecture toward 5G. IEEE Netw. 29, 2 (Mar. 2015), 16--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. 2015. Optical service chaining for network function virtualization. IEEE Commun. Mag. 53, 4 (Apr. 2015), 152--158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Telefonica, Sprint, 6WIND, Dell, EnterpriseWeb, Mellanox, Metaswitch, Overture Networks, Qosmos, and Aeroflex. 2014. PoC#1—CloudNFV Open NFV Framework Project. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  108. NTT, Cisco, HP, and Juniper Networks. 2014. PoC#2—Service Chaining for NW Function Selection in Carrier Networks. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  109. Deutsche Telekom, Ericsson, x-ion GmbH, and Deutsche Telekom Innovation Laboratories. 2014. PoC#8—Automated Network Orchestration. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  110. Linda Dunbar and Cathy Zhang. 2015. PoC#28 - SDN Controlled VNF Forwarding Graph. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  111. Telstra, Hewlett-Packard, Alcatel Lucent, and F5 Networks. 2016. PoC#38 - Full ISO 7-layer Stack Fulfilment, Activation and Orchestration of VNFs in Carrier Networks. Technical Report. The European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  112. F. Callegati, W. Cerroni, C. Contoli, and F. Foresta. 2017. Performance of intent-based virtualized network infrastructure management. In Proceedings of the 2017 IEEE International Conference on Communications (ICC’17). 1--6.Google ScholarGoogle Scholar
  113. Evangelos Haleplidis, Jamal Hadi Salim, Spyros Denazis, and Odysseas Koufopavlou. 2014. Towards a network abstraction model for SDN. J. Netw. Syst. Manage. 23, 2 (Jul. 2014), 309--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Wooseong Kim. 2015. Toward network function virtualization for cognitive wireless mesh networks: A TCP case study. J. Wireless Commun. Netw. 2015, 1 (Oct. 2015), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  115. Evelyne Roch. 2015. PoC#21 - Network Intensive and Compute Intensive Hardware Acceleration. Technical Report. The European Telecommunications Standards Institute. Retrieved from https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2015//NFVTST(15)000111r1_PoC_21__Network_Intensive_and_Compute_Intensive_Hardware_Acc.docx.Google ScholarGoogle Scholar
  116. Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo Jacob. 2015. Toward an SDN-enabled NFV architecture. IEEE Commun. Mag. 53, 4 (2015), 187--193.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Guozhen Cheng, Hongchang Chen, Hongchao Hu, Zhiming Wang, and Julong Lan. 2015. Enabling network function combination via service chain instantiation. Comput. Netw. 92, 2 (2015), 396--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. G. M. Saridis, S. Peng, Y. Yan, A. Aguado, B. Guo, M. Arslan, C. Jackson, W. Miao, N. Calabretta, F. Agraz, S. Spadaro, G. Bernini, N. Ciulli, G. Zervas, R. Nejabati, and D. Simeonidou. 2016. Lightness: A function-virtualizable software defined data center network with all-optical circuit/packet switching. J. Lightwave Technol. 34, 7 (Apr. 2016), 1618--1627.Google ScholarGoogle ScholarCross RefCross Ref
  119. A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and J. Halpern. 2010. Forwarding and Control Element Separation (ForCES) Protocol Specification. RFC 5810. RFC Editor. https://www.rfc-editor.org/info/rfc5810.Google ScholarGoogle Scholar
  120. H. D. Mustafa, B. M. Baveja, S. Vijayan, S. N. Merchant, and U. B. Desai. 2015. Replicating the geographical cloud: Provisioning omnipresence, omniscience and omnipotence. Fut. Generat. Comput. Syst. 47 (2015), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Linux Foundation. 2016. Data Plane Development Kit (DPDK) Documentation. Retrieved July 25, 2016 from http://dpdk.org/doc.Google ScholarGoogle Scholar
  122. J. Hwang, K. K. Ramakrishnan, and T. Wood. 2015. NetVM: High performance and flexible networking using virtualization on commodity platforms. IEEE Trans. Netw. Service Manage. 12, 1 (Mar. 2015), 34--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the art of network function virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation (NSDI’14). USENIX Association, Berkeley, CA, 459--473. http://dl.acm.org/citation.cfm?id=2616448.2616491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. ETSI. 2016. Network functions virtualisation (NFV)—Virtualisation technologies. Report on the application of different virtualisation technologies in the NFV framework. ETSI GS NFV-EVE 004 V1.1.1 (Mar. 2016).Google ScholarGoogle Scholar
  125. Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster management at Google with Borg. In Proceedings of the European Conference on Computer Systems (EuroSys’15). Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. 2013. Omega: Flexible, scalable schedulers for large compute clusters. In Proceedings of the SIGOPS European Conference on Computer Systems (EuroSys’13). 351--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation (NSDI’11). USENIX Association, Berkeley, CA, 295--308. http://dl.acm.org/citation.cfm?id=1972457.1972488 Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. 2017. Network slicing in 5G: Survey and challenges. IEEE Commun. Mag. 55, 5 (May 2017), 94--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain. 2017. Network slicing for 5G: Challenges and opportunities. IEEE Internet Comput. 21, 5 (2017), 20--27.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Integrated NFV/SDN Architectures: A Systematic Literature Review

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format