skip to main content
10.1145/3178126.3178136acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

From Uncertainty Data to Robust Policies for Temporal Logic Planning

Authors Info & Claims
Published:11 April 2018Publication History

ABSTRACT

We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving.

References

  1. C. Baier and J-P. Katoen. 2008. Principles of Model Checking. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Bemporad and M. Morari. 1999. Control of systems integrating logic, dynamics, and constraints. Automatica 35, 3 (1999), 407--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. 2009. Robust optimization. Princeton University Press.Google ScholarGoogle Scholar
  4. D. Bertsimas and I. Dunning. 2016. Multistage Robust Mixed-Integer Optimization with Adaptive Partitions. Operations Research 64, 4 (2016), 980--998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bertsimas and A. Georghiou. 2017. Binary decision rules for multistage adaptive mixed-integer optimization. Mathematical Programming (March 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. 2006. Linear encodings of bounded LTL model checking. Logical Methods in Computer Science 2, 5 (Nov. 2006), 1--64.Google ScholarGoogle ScholarCross RefCross Ref
  7. G. C. Calafiore. 2010. Random convex programs. SIAM Journal on Optimization 20, 6 (2010), 3427--3464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. C. Calafiore, D. Lyons, and L. Fagiano. 2012. On mixed-integer random convex programs. In IEEE Conf. on Decision and Control. 3508--3513.Google ScholarGoogle Scholar
  9. M. C. Campi and S. Garatti. 2008. The exact feasibility of randomized solutions of uncertain convex programs. SIAM Journal on Optimization 19, 3 (2008), 1211--1230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marco C. Campi and Simone Garatti. 2018. Wait-and-judge scenario optimization. Mathematical Programming 167, 1 (Jan. 2018), 155--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. X. C. Ding, S. L. Smith, C. Belta, and D. Rus. 2011. LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees. Proc. 18th IFAC World Congress 44, 1 (2011), 3515--3520.Google ScholarGoogle Scholar
  12. P. M. Esfahani, T. Sutter, and J. Lygeros. 2015. Performance Bounds for the Scenario Approach and an Extension to a Class of Non-Convex Programs. IEEE Trans. on Automatic Control 60, 1 (Jan. 2015), 46--58.Google ScholarGoogle Scholar
  13. G. E. Fainekos, H. Kress-Gazit, and G.J. Pappas. 2005. Hybrid Controllers for Path Planning: A Temporal Logic Approach. In IEEE Conf. on Decision and Control. 4885--4890.Google ScholarGoogle Scholar
  14. S. S. Farahani, R. Majumdar, V. S. Prabhu, and S. E. Z. Soudjani. 2017. Shrinking Horizon Model Predictive Control with chance-constrained signal temporal logic specifications. In American Control Conf. 1740--1746.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. S. Farahani, V. Raman, and R. M. Murray. 2015. Robust Model Predictive Control for Signal Temporal Logic Synthesis. IFAC-PapersOnLine 48, 27 (2015), 323--328.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. Frick, P. G. Sessa, T. A. Wood, and M. Kamgarpour. 2018. Exploiting submod-uarlity in mixed-integer chance constrained programs. (Jan. 2018), 15 pages. arXiv:1801.03258 (under review).Google ScholarGoogle Scholar
  17. D. Frick, T. A. Wood, G. Ulli, and M. Kamgarpour. 2017. Robust Control Policies Given Formal Specifications in Uncertain Environments. IEEE Control Systems Letters 1, 1 (July 2017), 20--25.Google ScholarGoogle ScholarCross RefCross Ref
  18. E. A. Gol, M. Lazar, and C. Belta. 2015. Temporal logic model predictive control. Automatica 56 (2015), 78 - 85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski. 2006. Optimization over state feedback policies for robust control with constraints. Automatica 42, 4 (2006), 523--533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros. 2016. A Scenario Approach for Non-Convex Control Design. IEEE Trans. on Automatic Control 61, 2 (Feb. 2016), 334--345.Google ScholarGoogle Scholar
  21. Int. Business Machines Corp. (IBM). 2017. IBM ILOG CPLEX Optimization Studio. (Sept. 2017). http://www.ibm.com/software/commerce/optimization/cplex-optimizerGoogle ScholarGoogle Scholar
  22. M. I. Jordan. 1998. Learning in graphical models. NATO ASI Series, Vol. 89. Springer Science & Business Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Kamgarpour, S. Summers, and J. Lygeros. 2013. Control Design for Specifications on Stochastic Hybrid Systems. In Proc. 16th Int. Conf. on Hybrid Systems: Computation and Control. 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Kamgarpour, T. A. Wood, S. Summers, and J. Lygeros. 2017. Control synthesis for stochastic systems given automata specifications defined by stochastic sets. Automatica 76 (2017), 177--182.Google ScholarGoogle ScholarCross RefCross Ref
  25. S. Karaman, R. G. Sanfelice, and E. Frazzoli. 2008. Optimal control of Mixed Logical Dynamical systems with Linear Temporal Logic specifications. In IEEE Conf. on Decision and Control. 2117--2122.Google ScholarGoogle Scholar
  26. Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and Calin Belta. 2014. Temporal Logic Inference for Classification and Prediction from Data. In Proc. 17th Int. Conf. on Hybrid Systems: Computation and Control. 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. 2009. Temporal-Logic-Based Reactive Mission and Motion Planning. IEEE Trans. on Robotics 25, 6 (Dec. 2009), 1370--1381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Lahijanian, S. B. Andersson, and C. Belta. 2012. Temporal Logic Motion Planning and Control With Probabilistic Satisfaction Guarantees. IEEE Trans. on Robotics 28, 2 (April 2012), 396--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Löfberg. 2004. YALMIP: a toolbox for modeling and optimization in MATLAB. In IEEE Int. Symp. on Computer Aided Control Systems Design. 284--289.Google ScholarGoogle ScholarCross RefCross Ref
  30. K. Margellos, P. Goulart, and J. Lygeros. 2014. On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems. IEEE Trans. on Automatic Control 59, 8 (Aug. 2014), 2258--2263.Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Pnueli. 1977. The Temporal Logic of Programs. In Proc. 18th Ann. Symp. on Foundations of Computer Science. 46--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. K. Postek and D. den Hertog. 2016. Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set. INFORMS Journal on Computing 28, 3 (2016), 553--574.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia. 2015. Reactive Synthesis from Signal Temporal Logic Specifications. In Proc. 18th Int. Conf. on Hybrid Systems: Computation and Control. 239--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Sadigh and A. Kapoor. 2016. Safe Control under Uncertainty with Probabilistic Signal Temporal Logic. In Proc. Robotics: Science and Systems. Ann Arbor, Michigan, USA.Google ScholarGoogle Scholar
  35. G. Schildbach, L. Fagiano, and M. Morari. 2013. Randomized Solutions to Convex Programs with Multiple Chance Constraints. SIAM Journal on Optimization 23, 4 (2013), 2479--2501.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Shapiro. 2013. Sample Average Approximation. Springer US, Boston, MA, 1350--1355.Google ScholarGoogle Scholar
  37. P. Tabuada and G. J. Pappas. 2006. Linear Time Logic Control of Discrete-Time Linear Systems. IEEE Trans. on Automatic Control 51, 12 (Dec. 2006), 1862--1877.Google ScholarGoogle ScholarCross RefCross Ref
  38. E. M. Wolff, U. Topcu, and R. M. Murray. 2012. Robust control of uncertain Markov Decision Processes with temporal logic specifications. In IEEE Conf. on Decision and Control. 3372--3379.Google ScholarGoogle Scholar
  39. E. M. Wolff, U. Topcu, and R. M. Murray. 2014. Optimization-based trajectory generation with linear temporal logic specifications. In IEEE Int. Conf. on Robotics and Automation. 5319--5325.Google ScholarGoogle Scholar
  40. X. Zhang, S. Grammatico, G. Schildbach, P. Goulart, and J. Lygeros. 2015. On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60 (2015), 182--188. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. From Uncertainty Data to Robust Policies for Temporal Logic Planning

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '18: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)
          April 2018
          296 pages
          ISBN:9781450356428
          DOI:10.1145/3178126

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 April 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate153of373submissions,41%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader