skip to main content
research-article

Natural Walking in Virtual Reality: A Review

Published:10 April 2018Publication History
Skip Abstract Section

Abstract

Recent technological developments have finally brought virtual reality (VR) out of the laboratory and into the hands of developers and consumers. However, a number of challenges remain. Virtual travel is one of the most common and universal tasks performed inside virtual environments, yet enabling users to navigate virtual environments is not a trivial challenge—especially if the user is walking. In this article, we initially provide an overview of the numerous virtual travel techniques that have been proposed prior to the commercialization of VR. Then we turn to the mode of travel that is the most difficult to facilitate, that is, walking. The challenge of providing users with natural walking experiences in VR can be divided into two separate, albeit related, challenges: (1) enabling unconstrained walking in virtual worlds that are larger than the tracked physical space and (2) providing users with appropriate multisensory stimuli in response to their interaction with the virtual environment. In regard to the first challenge, we present walking techniques falling into three general categories: repositioning systems, locomotion based on proxy gestures, and redirected walking. With respect to multimodal stimuli, we focus on how to provide three types of information: external sensory information (visual, auditory, and cutaneous), internal sensory information (vestibular and kinesthetic/proprioceptive), and efferent information. Finally, we discuss how the different categories of walking techniques compare and discuss the challenges still facing the research community.

References

  1. Lisa Avila and Mike Bailey. 2014. Virtual reality for the masses. IEEE Computer Graphics and Applications 34, 5 (2014), 103--104.Google ScholarGoogle ScholarCross RefCross Ref
  2. Mahdi Azmandian, Timofey Grechkin, and Evan Suma Rosenberg. 2017. An evaluation of strategies for two-user redirected walking in shared physical spaces. In 2017 IEEE Virtual Reality (VR’17). IEEE, 91--98.Google ScholarGoogle Scholar
  3. Eric R. Bachmann, Jeanette E. Holm, Michael A. Zmuda, and Eric Hodgson. 2013. Collision prediction and prevention in a simultaneous two-user immersive virtual environment. In 2013 IEEE Virtual Reality (VR’13). IEEE, 89--90.Google ScholarGoogle Scholar
  4. Tom Banton, Jeanine Stefanucci, Frank Durgin, Adam Fass, and Dennis Proffitt. 2005. The perception of walking speed in a virtual environment. Presence: Teleoperators and Virtual Environments 14, 4 (2005), 394--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benjamin Bolte and Markus Lappe. 2015. Subliminal reorientation and repositioning in immersive virtual environments using saccadic suppression. IEEE Transactions on Visualization and Computer Graphics 21, 4 (2015), 545--552.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Laroussi Bouguila, Evequoz Florian, Michele Courant, and Beat Hirsbrunner. 2005. Active walking interface for human-scale virtual environment. In 11th International Conference on Human-Computer Interaction (HCII’05), Vol. 5. ACM, 22--27.Google ScholarGoogle Scholar
  7. Laroussi Bouguila, Masaru Iwashita, Beat Hirsbrunner, and Makoto Sato. 2003. Virtual locomotion interface with ground surface simulation. In Proceedings of the International Conference on Artificial Reality and Telexistence (ICAT’03).Google ScholarGoogle Scholar
  8. Doug A. Bowman, Elizabeth T. Davis, Larry F. Hodges, and Albert N. Badre. 1999. Maintaining spatial orientation during travel in an immersive virtual environment. Presence: Teleoperators and Virtual Environments 8, 6 (1999), 618--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Doug A. Bowman, David Koller, and Larry F. Hodges. 1997. Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In IEEE 1997 Virtual Reality Annual International Symposium. IEEE, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola Jr., and Ivan Poupyrev. 2004. 3D User Interfaces: Theory and Practice. Addison-Wesley Professional, Redwood City, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Doug A. Bowman, Ryan P. McMahan, and Eric D. Ragan. 2012. Questioning naturalism in 3d user interfaces. Communications of the ACM 55, 9 (2012), 78--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gerd Bruder, Paul Lubos, and Frank Steinicke. 2015. Cognitive resource demands of redirected walking. IEEE Transactions on Visualization and Computer Graphics 21, 4 (2015), 539--544.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Luís Bruno, João Pereira, and Joaquim Jorge. 2013. A new approach to walking in place. In Human-Computer Interaction (INTERACT’13). 370--387.Google ScholarGoogle Scholar
  14. Tuncay Cakmak and Holger Hager. 2014. Cyberith virtualizer: A locomotion device for virtual reality. In ACM SIGGRAPH 2014 Emerging Technologies. ACM, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Deborah J. Cook, Cynthia D. Mulrow, and R. Brian Haynes. 1997. Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine 126, 5 (1997), 376--380.Google ScholarGoogle ScholarCross RefCross Ref
  16. Perry R. Cook. 1997. Physically informed sonic modeling (PhISM): Synthesis of percussive sounds. Computer Music Journal 21, 3 (1997), 38--49.Google ScholarGoogle ScholarCross RefCross Ref
  17. Perry R. Cook. 2002. Modeling bill’s gait: Analysis and parametric synthesis of walking sounds. Proceedings of the AES 22nd International Conference on Virtual, Synthetic, and Entertainment Audio, 73--78.Google ScholarGoogle Scholar
  18. Rudolph P. Darken, William R. Cockayne, and David Carmein. 1997. The omni-directional treadmill: A locomotion device for virtual worlds. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology (UIST’97). ACM, 213--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Simon Davis, Keith Nesbitt, and Eugene Nalivaiko. 2014. A systematic review of cybersickness. In Proceedings of the 2014 Conference on Interactive Entertainment (IE’14). ACM, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Johannes Dichgans and Thomas Brandt. 1978. Visual-vestibular interaction: Effects on self-motion perception and postural control. In Perception: Handbook of Sensory Physiology, R. Held, H. W. Leibowitz, and H. LEditors Teuber (Eds.). Vol. VIII. Springer, Berlin, 755--804.Google ScholarGoogle Scholar
  21. Frank H. Durgin, Catherine Reed, and Cara Tigue. 2007. Step frequency and perceived self-motion. ACM Transactions on Applied Perception (TAP) 4, 1 (2007), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jeff Feasel, Mary C. Whitton, Laura Kassler, Frederick P. Brooks, and Michael D. Lewek. 2011. The integrated virtual environment rehabilitation treadmill system. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19, 3 (2011), 290--297.Google ScholarGoogle ScholarCross RefCross Ref
  23. Jeff Feasel, Mary C. Whitton, and Jeremy D. Wendt. 2008. LLCM-WIP: Low-latency, continuous-motion walking-in-place. In Proceedings of the 2008 IEEE Symposium on 3D User Interfaces (3DUI’08). IEEE, 97--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ajoy S. Fernandes and Steven K. Feiner. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI’16). IEEE, 201--210.Google ScholarGoogle Scholar
  25. Hernandi F. K. Filho, Wilson J. Sarmiento, Vitor Jorge, Cesar Collazos, and Nedel Luciana. 2012. Walk in place using a balance board matrix. In Proceedings of Workshop on Works in Progress (SIBGRAPI’12). 1--2.Google ScholarGoogle Scholar
  26. Federico Fontana and Roberto Bresin. 2003. Physics-based sound synthesis and control: Crushing, walking and running by crumpling sounds. In Proceedings of the XIV Colloquium on Musical Informatics (CIM’03). 109--114.Google ScholarGoogle Scholar
  27. Federico Fontana and Yon Visell. 2012. Walking with the Senses: Perceptual Techniques for Walking in Simulated Environments. Logos-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  28. Timofey Grechkin, Mahdi Azmandian, Mark Bolas, and Evan A. Suma. 2015. Towards context-sensitive reorientation for real walking in virtual reality. In 2015 IEEE Virtual Reality (VR’15). IEEE, 185--186.Google ScholarGoogle Scholar
  29. Timofey Grechkin, Jerald Thomas, Mahdi Azmandian, Mark Bolas, and Evan Suma. 2016. Revisiting detection thresholds for redirected walking: Combining translation and curvature gains. In Proceedings of the ACM Symposium on Applied Perception (TAP’15). ACM, 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Emilie Guy, Parinya Punpongsanon, Daisuke Iwai, Kosuke Sato, and Tamy Boubekeur. 2015. LazyNav: 3D ground navigation with non-critical body parts. In 2015 IEEE Symposium on 3D User Interfaces (3DUI’15). IEEE, 43--50.Google ScholarGoogle ScholarCross RefCross Ref
  31. Laurence R. Harris, Michael R. Jenkin, Daniel Zikovitz, Fara Redlick, Philip Jaekl, Urszula Jasiobedzka, Heather L. Jenkin, and Robert S. Allison. 2002. Simulating self motion I: Cues for the perception of motion. Virtual Reality 6, 2 (2002), 75--85.Google ScholarGoogle ScholarCross RefCross Ref
  32. Lawrence J. Hettinger, Tarah Schmidt, David L. Jones, Behrang Keshavarz, Rudolph P. Darken, and Barry Peterson. 2002. Illusory Self-motion in Virtual Environments. CRC Press, Boca Raton, FL, 471--492.Google ScholarGoogle Scholar
  33. Eric Hodgson and Eric Bachmann. 2013. Comparing four approaches to generalized redirected walking: Simulation and live user data. IEEE Transactions on Visualization and Computer Graphics 19, 4 (2013), 634--643. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jeannette E. Holm. 2012. Collision Prediction and Prevention in a Simultaneous Multi-User Immersive Virtual Environment. Ph.D. Dissertation. Miami University.Google ScholarGoogle Scholar
  35. Jiung-Yao Huang. 2003. An omnidirectional stroll-based virtual reality interface and its application on overhead crane training. IEEE Transactions on Multimedia 5, 1 (2003), 39--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Victoria Interrante, Brian Ries, and Lee Anderson. 2007. Seven league boots: A new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In Proceedings of the 2007 IEEE Symposium on 3D User Interfaces (3DUI’07). IEEE, 167--170.Google ScholarGoogle ScholarCross RefCross Ref
  37. Hiroo Iwata. 1999. The torus treadmill: Realizing locomotion in ves. IEEE Computer Graphics and Applications 19, 6 (1999), 30--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Hiroo Iwata and Takashi Fujii. 1996. Virtual perambulator: A novel interface device for locomotion in virtual environment. In Proceedings of the IEEE Virtual Reality Annual International Symposium, 1996. IEEE, 60--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Hiroo Iwata, Hiroaki Yano, Hiroyuki Fukushima, and Haruo Noma. 2005. CirculaFloor. IEEE Computer Graphics and Applications 25, 1 (2005), 64--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Hiroo Iwata, Hiroaki Yano, and Masaki Tomiyoshi. 2007. String walker. In Proceedings of SIGGRAPH 2007. ACM, 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Laura Kassler, Jeff Feasel, Michael D. Lewek, Frederick P. Brooks Jr., and Mary C. Whitton. 2010. Matching actual treadmill walking speed and visually perceived walking speed in a projection virtual environment. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization (APGV’10). ACM, 161--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Alexandra Kitson, Abraham M. Hashemian, Ekaterina R. Stepanova, Ernst Kruijff, and Bernhard E. Riecke. 2017. Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In 2017 IEEE Symposium on 3D User Interfaces (3DUI’17). IEEE, 73--82.Google ScholarGoogle Scholar
  43. Ernst Kruijff, Alexander Marquardt, Christina Trepkowski, Robert W. Lindeman, Andre Hinkenjann, Jens Maiero, and Bernhard E. Riecke. 2016. On your feet!: Enhancing vection in leaning-based interfaces through multisensory stimuli. In Proceedings of the 2016 Symposium on Spatial User Interaction (SUI’16). ACM, 149--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ernst Kruijff, Bernhard Riecke, Christina Trekowski, and Alexandra Kitson. 2015. Upper body leaning can affect forward self-motion perception in virtual environments. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction (SUI’15). ACM, 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Eike Langbehn, Gerd Bruder, and Frank Steinicke. 2016. Subliminal reorientation and repositioning in virtual reality during eye blinks. In Proceedings of the 2016 Symposium on Spatial User Interaction (SUI’16). ACM, 213--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Eike Langbehn, Tobias Eichler, Sobin Ghose, Kai von Luck, Gerd Bruder, and Frank Steinicke. 2015. Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In Proceedings of the GI Workshop on Virtual and Augmented Reality (GI VR/AR’15). 149--160.Google ScholarGoogle Scholar
  47. Eike Langbehn, Paul Lubos, Gerd Bruder, and Frank Steinicke. 2017. Bending the curve: Sensitivity to bending of curved paths and application in room-scale VR. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017), 1389--1398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pontus Larsson, Aleksander Väljamäe, Daniel Västfjäll, Ana Tajadura-jiménez, and Mendel Kleiner. 2010. Auditory-induced presence in mixed reality environments and related technology. Engineering of Mixed Reality Systems (2010), 143--163. Retrieved from http://www.springerlink.com/index/10.1007/978-1-84882-733-2.Google ScholarGoogle Scholar
  49. Alvin W. Law, Jessica W. Ip, Benjamin V. Peck, Yon Visell, Paul G. Kry, and Jeremy R. Cooperstock. 2009. Multimodal floor for immersive environments. In ACM SIGGRAPH 2009 Emerging Technologies. ACM, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Alvin W. Law, Benjamin V. Peck, Yon Visell, Paul G. Kry, and Jeremy R. Cooperstock. 2008. A multi-modal floor-space for experiencing material deformation underfoot in virtual reality. In IEEE International Workshop on Haptic Audio visual Environments and Games, 2008 (HAVE’08). IEEE, 126--131.Google ScholarGoogle ScholarCross RefCross Ref
  51. Robert W. Lindeman, John L. Sibert, and James K. Hahn. 1999. Hand-held windows: Towards effective 2D interaction in immersive virtual environments. In IEEE Proceedings of Virtual Reality (VR’99). IEEE, 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Maud Marchal, Gabriel Cirio, Yon Visell, Federico Fontana, Stefania Serafin, Jeremy Cooperstock, and Anatole Lécuyer. 2013. Multimodal rendering of walking over virtual grounds. In Human Walking in Virtual Environments. Springer, New York, NY, 263--295.Google ScholarGoogle Scholar
  53. Margaret W. Matlin. 2009. Cognition. Seventh Edition. New York: John Wiley 8 Sons, Inc., Hoboken, NJ.Google ScholarGoogle Scholar
  54. Keigo Matsumoto, Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2016. Curvature manipulation techniques in redirection using haptic cues. In 2016 IEEE Symposium on 3D User Interfaces (3DUI’16). IEEE, 105--108.Google ScholarGoogle ScholarCross RefCross Ref
  55. Morgan McCullough, Hong Xu, Joel Michelson, Matthew Jackoski, Wyatt Pease, William Cobb, William Kalescky, Joshua Ladd, and Betsy Williams. 2015. Myo arm: Swinging to explore a VE. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception (SAP’15). ACM, 107--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Eliana Medina, Ruth Fruland, and Suzanne Weghorst. 2008. Virtusphere: Walking in a human size VR hamster ball. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 52. SAGE Publications, 2102--2106.Google ScholarGoogle ScholarCross RefCross Ref
  57. Michael Meehan, Brent Insko, Mary Whitton, and Frederick P. Brooks Jr. 2002. Physiological measures of presence in stressful virtual environments. ACM Transactions on Graphics (TOG) 21, 3 (2002), 645--652. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Florian Meyer, Malte Nogalski, and Wolfgang Fohl. 2016. Detection thresholds in audio-visual redirected walking. In Proceedings of the International Conference on Sound and Music Computing 2016 (SMC’16). Sound and Music Computing Network, Hamburg, Germany, 293--299.Google ScholarGoogle Scholar
  59. Jacquelyn F. Morie. 2014. When VR really hits the streets. In Proceedings of Photo-Optical Instrumentation Engineers (SPIE’14), Vol. 9012. International Society for Optics and Photonics, San Francisco, CA, 0120B1--0120B7.Google ScholarGoogle Scholar
  60. Thomas Nescher, Ying-Yin Huang, and Andreas Kunz. 2014. Planning redirection techniques for optimal free walking experience using model predictive control. In 2014 IEEE Symposium on 3D User Interfaces (3DUI’14). IEEE, 111--118.Google ScholarGoogle ScholarCross RefCross Ref
  61. Christian T. Neth, Jan L. Souman, David Engel, Uwe Kloos, Heinrich H. Bulthoff, and Betty J. Mohler. 2012. Velocity-dependent dynamic curvature gain for redirected walking. IEEE Transactions on Visualization and Computer Graphics 18, 7 (2012), 1041--1052. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Niels C. Nilsson, Stefania Serafin, Morten H. Laursen, Kasper S. Pedersen, Erik Sikström, and Rolf Nordahl. 2013. Tapping-in-place: Increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In Proceedings of the 2013 IEEE Symposium on 3D User Interfaces (3DUI’13). IEEE, 31--38.Google ScholarGoogle ScholarCross RefCross Ref
  63. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2013. The perceived naturalness of virtual locomotion methods devoid of explicit leg movements. In Proceedings of Motion in Games (MIG’13). ACM, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2014a. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Transactions on Visualization and Computer Graphics 20, 4 (2014), 569--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2014b. The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology (VRST’14). ACM, 187--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2015a. The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds. In 2015 IEEE Virtual Reality (VR’15). IEEE, 249--250.Google ScholarGoogle Scholar
  67. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2015b. The effect of visual display properties and gain presentation mode on the perceived naturalness of virtual walking speeds. In 2015 IEEE Virtual Reality (VR’15). IEEE, 81--88.Google ScholarGoogle Scholar
  68. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2016a. The perceived naturalness of virtual walking speeds during WIP locomotion: Summary and meta-analyses. PsychNology Journal 14, 1 (2016), 7--39.Google ScholarGoogle Scholar
  69. Niels C. Nilsson, Stefania Serafin, and Rolf Nordahl. 2016b. Walking in place through virtual worlds. In International Conference on Human-Computer Interaction (HCII’16). Springer, Cham, Toronto, Canada, 37--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Niels C. Nilsson, Evan Suma, Rolf Nordahl, Mark Bolas, and Stefania Serafin. 2016. Estimation of detection thresholds for audiovisual rotation gains. In 2016 IEEE Virtual Reality (VR’16). IEEE, 241--242.Google ScholarGoogle Scholar
  71. Malte Nogalski and Wolfgang Fohl. 2016. Acoustic redirected walking with auditory cues by means of wave field synthesis. In 2016 IEEE Virtual Reality (VR’16). IEEE, 245--246.Google ScholarGoogle Scholar
  72. Haruo Noma. 1998. Design for locomotion interface in a large scale virtual environment ATLAS: ATR locomotion interface for active self motion. In Proceedings of the AMSE Dynamic System Control Division (DSCD’98) 64 (1998), 111--118.Google ScholarGoogle Scholar
  73. Rolf Nordahl. 2005. Design and evaluation of a multi-modal footstep controller with VR-applications. In Proceedings of the 2nd International Conference on Enactive Interfaces. European Enactive Network of Excellence, Genoa, Italy, 57--62.Google ScholarGoogle Scholar
  74. Rolf Nordahl. 2006. Increasing the motion of users in photo-realistic virtual environments by utilising auditory rendering of the environment and ego-motion. In The 9th Annual International Workshop on Presence (PRESENCE’06). International Society for Presence Research, Cleveland, OH, 57--63.Google ScholarGoogle Scholar
  75. Rolf Nordahl, Amir Berrezag, Smilen Dimitrov, Luca Turchet, Vincent Hayward, and Stefania Serafin. 2010. Preliminary experiment combining virtual reality haptic shoes and audio synthesis. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (Eurohaptics’10). Springer, Amsterdam, Netherlands, 123--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Rolf Nordahl, Stefania Serafin, Niels C. Nilsson, and Luca Turchet. 2012a. Enhancing realism in virtual environments by simulating the audio-haptic sensation of walking on ground surfaces. In 2012 IEEE Virtual Reality Short Papers and Posters (VRW’12). IEEE, 73--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Rolf Nordahl, Serafin Serafin, Luca Turchet, and Niels C. Nilsson. 2012b. A multimodal architecture for simulating natural interactive walking in virtual environments. PsychNology 9, 3 (2012), 245--268.Google ScholarGoogle Scholar
  78. Rolf Nordahl, Luca Turchet, and Stefania Serafin. 2011. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications. IEEE Transactions on Visualization and Computer Graphics 17, 9 (2011), 1234--1244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Stefano Papetti, Federico Fontana, and Marco Civolani. 2009. A shoe-based interface for ecological ground augmentation. In Proceedings of the 4th International Haptic and Auditory Interaction Design Workshop (HAID’09), Vol. 2. Springer, Dresden, Germany, 44.Google ScholarGoogle Scholar
  80. Tabitha C. Peck, Henry Fuchs, and Mary C. Whitton. 2011. An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotion interfaces. In Proceedings of the 2011 IEEE Virtual Reality (VR’11). IEEE, 55--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Thies Pfeiffer, Aljoscha Schmidt, and Patrick Renner. 2016. Detecting movement patterns from inertial data of a mobile head-mounted-display for navigation via walking-in-place. In 2016 IEEE Virtual Reality (VR’16), 263--264.Google ScholarGoogle Scholar
  82. Wendy Powell, Brett Stevens, Steve Hand, and Maureen Simmonds. 2011. Blurring the boundaries: The perception of visual gain in treadmill-mediated virtual environments. In Proceedings of the 3rd IEEE VR Workshop on Perceptual Illusions in Virtual Environments (PIVE’11). IEEE, 4--8.Google ScholarGoogle Scholar
  83. Parinya Punpongsanon, Emilie Guy, Daisuke Iwai, Kosuke Sato, and Tamy Boubekeur. 2016. Extended LazyNav: Virtual 3D ground navigation for large displays and head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 23, 8 (2016), 1952--1963.Google ScholarGoogle ScholarCross RefCross Ref
  84. Laura K. Pynn and Joseph F. X. DeSouza. 2013. The function of efference copy signals: Implications for symptoms of schizophrenia. Vision Research 76 (2013), 124--133.Google ScholarGoogle ScholarCross RefCross Ref
  85. Sharif Razzaque. 2005. Redirected Walking. Ph.D. Dissertation. University of North Carolina at Chapel Hill, Chapel Hill, NC. Advisor(s) Fredrick P. Brooks Jr. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Sharif Razzaque, Zachariah Kohn, and Mary C. Whitton. 2001. Redirected walking. In Proceedings of Eurographics, Vol. 9. Eurographics Association, Manchester, England, 105--106.Google ScholarGoogle Scholar
  87. Paul Richard, Laroussi Bouguila, Michele Courant, and Beat Hirsbrunner. 2007. Enactive navigation in virtual environments: Evaluation of the walking PAD. In Proceedings of the 4th International Conference on Enactive Interfaces. Association ACROE, Grenoble, France, 225--228.Google ScholarGoogle Scholar
  88. Bernhard E. Riecke, Jörg Schulte-Pelkum, Marios N. Avraamides, Markus von der Heyde, and Heinrich H. Bülthoff. 2005. Scene consistency and spatial presence increase the sensation of self-motion in virtual reality. In Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization (APGV’05). ACM, A Corona, Spain, 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Gabriel Robles-De-La-Torre. 2006. The importance of the sense of touch in virtual and real environments. Ieee Multimedia 13, 3 (2006), 24--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Bhuvaneswari Sarupuri, Miriam Luque Chipana, and Robert W. Lindeman. 2017. Trigger walking: A low-fatigue travel technique for immersive virtual reality. In 2017 IEEE Symposium on 3D User Interfaces (3DUI’17). IEEE, 227--228.Google ScholarGoogle Scholar
  91. Stefania Serafin, Niels C. Nilsson, Erik Sikstrom, Amalia De Goetzen, and Rolf Nordahl. 2013. Estimation of detection thresholds for acoustic based redirected walking techniques. In 2013 IEEE Virtual Reality (VR’13). IEEE, 161--162.Google ScholarGoogle Scholar
  92. Stefania Serafin, Luca Turchet, and Rolf Nordahl. 2009. Extraction of ground reaction forces for real-time synthesis of walking sounds. Audio Mostly 1 (2009), 99--105.Google ScholarGoogle Scholar
  93. Stefania Serafin, Luca Turchet, Rolf Nordahl, Smilen Dimitrov, Amir Berrezag, and Vincent Hayward. 2010. Identification of virtual grounds using virtual reality haptic shoes and sound synthesis. In Proceedings of Eurohaptics Symposium on Haptic and Audio-Visual Stimuli: Enhancing Experiences and Interaction. 61--70.Google ScholarGoogle Scholar
  94. Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional reality: Using the physical environment to design virtual reality experiences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI’15). ACM, 3307--3316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Mel Slater, Anthony Steed, and Martin Usoh. 1993. The virtual treadmill: A naturalistic metaphor for navigation in immersive virtual environments. In First Eurographics Workshop on Virtual Reality, M. Goebel (Ed.). Springer, Vienna, Barcelona, Spain, 71--86.Google ScholarGoogle Scholar
  96. Mel Slater and Martin Usoh. 1994. Body centred interaction in immersive virtual environments. Artificial Life and Virtual Reality 1 (1994), 125--148.Google ScholarGoogle Scholar
  97. Mel Slater, Martin Usoh, and Anthony Steed. 1994. Steps and ladders in virtual reality. In Proceedings of the ACM Conference on Virtual Reality Software and Technology (VRST’94). ACM, 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Mel Slater, Martin Usoh, and Anthony Steed. 1995. Taking steps: The influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction 2, 3 (1995), 201--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Jan L. Souman, P. Robuffo Giordano, M. Schwaiger, Ilja Frissen, Thomas Thümmel, Heinz Ulbrich, A. De Luca, Heinrich H. Bülthoff, and Marc O. Ernst. 2011. CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Transactions on Applied Perception (TAP) 8, 4 (2011), 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Misha Sra, Sergio Garrido-Jurado, Chris Schmandt, and Pattie Maes. 2016. Procedurally generated virtual reality from 3D reconstructed physical space. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (VRST’16). ACM, 191--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Mandayam A. Srinivasan and Cagatay Basdogan. 1997. Haptics in virtual environments: Taxonomy, research status, and challenges. Computers 8 Graphics 21, 4 (1997), 393--404.Google ScholarGoogle Scholar
  102. Frank. Steinicke, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe. 2010. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics 16, 1 (2010), 17--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Frank Steinicke, Yon Visell, Jennifer Campos, and Anatole Lécuyer. 2013. Human Walking in Virtual Environments: Perception, Technology, and Applications. Springer, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Evan A. Suma, Mahdi Azmandian, Timofey Grechkin, Thai Phan, and Mark Bolas. 2015. Making small spaces feel large: Infinite walking in virtual reality. In ACM SIGGRAPH 2015 Emerging Technologies. ACM, Los Angeles, CA, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Evan A. Suma, Gerd Bruder, Frank Steinicke, David M. Krum, and Mark Bolas. 2012. A taxonomy for deploying redirection techniques in immersive virtual environments. In 2012 IEEE Virtual Reality Short Papers and Posters (VRW’12). IEEE, Costa Mesa, CA, 43--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Evan A. Suma, Seth Clark, Samantha Finkelstein, Zachary Warte, David Krum, and M. Bolas. 2011a. Leveraging change blindness for redirection in virtual environments. In 2011 IEEE Virtual Reality Conference (VR’11). IEEE, 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. Evan A. Suma, David M. Krum, and Mark Bolas. 2011b. Redirection on mixed reality walking surfaces. In IEEE VR Workshop on Perceptual Illusions in Virtual Environments (PIVE’11). IEEE, 33--35.Google ScholarGoogle Scholar
  108. Evan A. Suma, David M. Krum, and Mark Bolas. 2013. Redirected walking in mixed reality training applications. In Human Walking in Virtual Environments. Springer, New York, NY, 319--331.Google ScholarGoogle Scholar
  109. Evan A. Suma, Belinda Lange, Albert S. Rizzo, David M. Krum, and Mark Bolas. 2011. Faast: The flexible action and articulated skeleton toolkit. In 2011 IEEE Virtual Reality (VR’11). IEEE, 247--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Evan A. Suma, Zachary Lipps, Samantha Finkelstein, David M. Krum, and Mark Bolas. 2012. Impossible spaces: Maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Transactions on Visualization and Computer Graphics 18, 4 (2012), 555--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Ivan E. Sutherland. 1965. The ultimate display. In Proceedings of the IFIP Congress. Spartan Books, Washington, DC, 506--508.Google ScholarGoogle Scholar
  112. David Swapp, Julian Williams, and Anthony Steed. 2010. The implementation of a novel walking interface within an immersive display. In Proceedings of the 2010 IEEE Symposium on 3D User Interfaces (3DUI’10). IEEE, 71--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. James N. Templeman, Patricia S. Denbrook, and Linda E. Sibert. 1999. Virtual locomotion: Walking in place through virtual environments. Presence 8, 6 (1999), 598--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Leo Terziman, Maud Marchal, Mathieu Emily, Franck Multon, Bruno Arnaldi, and Anatole Lécuyer. 2010. Shake-your-head: Revisiting walking-in-place for desktop virtual reality. In Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (VRST’10). ACM, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Sam Tregillus and Eelke Folmer. 2016. Vr-step: Walking-in-place using inertial sensing for hands free navigation in mobile vr environments. In Proceedings of the 2016 Conference on Human Factors in Computing Systems (CHI’16). ACM, 1250--1255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel Slater, and Frederick P. Brooks Jr. 1999. Walking--walking-in-place--flying, in virtual environments. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., Los Angeles, CA, 359--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Aleksander Väljamäe. 2009. Auditorily-induced illusory self-motion: A review. Brain Research Reviews 61, 2 (2009), 240--255.Google ScholarGoogle ScholarCross RefCross Ref
  118. Khrystyna Vasylevska and Hannes Kaufmann. 2017a. Compressing VR: Fitting large virtual environments within limited physical space. IEEE Computer Graphics and Applications 37, 5 (2017), 85--91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Khrystyna Vasylevska and Hannes Kaufmann. 2017b. Towards efficient spatial compression in self-overlapping virtual environments. In 2017 IEEE Symposium on 3D User Interfaces (3DUI’17). IEEE, 12--21.Google ScholarGoogle ScholarCross RefCross Ref
  120. Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas, and Evan A. Suma. 2013. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In 2013 IEEE Symposium on 3D User Interfaces (3DUI’13). IEEE, 39--42.Google ScholarGoogle Scholar
  121. Yon Visell, Federico Fontana, Bruno L. Giordano, Rolf Nordahl, Stefania Serafin, and Roberto Bresin. 2009. Sound design and perception in walking interactions. International Journal of Human-Computer Studies 67, 11 (2009), 947--959. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. David Waller and Eric Hodgson. 2013. Sensory contributions to spatial knowledge of real and virtual environments. In Human Walking in Virtual Environments, Frank Steinicke, Yon Visell, Jennifer Campos, and Anatole Lécuyer (Eds.). Springer, New York, 3--26.Google ScholarGoogle Scholar
  123. Benjamin Walther-Franks, Dirk Wenig, Jan Smeddinck, and Rainer Malaka. 2013. Suspended walking: A physical locomotion interface for virtual reality. In Entertainment Computing (ICEC’13). Springer, 185--188.Google ScholarGoogle Scholar
  124. Rik Warren and Alexander H. Wertheim. 1990. Perception 8 Control of Self-Motion. Lawrence Erlbaum Associates, London.Google ScholarGoogle Scholar
  125. William H. Warren, Bruce A. Kay, Wendy D. Zosh, Andrew P. Duchon, and Stephanie Sahuc. 2001. Optic flow is used to control human walking. Nature Neuroscience 4, 2 (2001), 213--216.Google ScholarGoogle ScholarCross RefCross Ref
  126. Jeremy D. Wendt. 2010. Real-Walking Models Improve Walking-in-Place Systems. Ph.D. Dissertation. University of North Carolina at Chapel Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Jeremy D. Wendt, Mary C. Whitton, and Frederick P. Brooks. 2010. GUD WIP: Gait-understanding-driven walking-in-place. In Proceedings of the 2010 IEEE Virtual Reality (VR’10). IEEE, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. Mary C. Whitton and Sharif Razzaque. 2008. Locomotion Interfaces. Morgan Kaufmann, San Francisco, CA, 107--146.Google ScholarGoogle Scholar
  129. Betsy Williams, Stephen Bailey, Gayathri Narasimham, Muqun Li, and Bobby Bodenheimer. 2011. Evaluation of walking in place on a Wii balance board to explore a virtual environment. Proceedings of the ACM Transactions on Applied Perception 8, 3 (2011), 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Betsy Williams, Gayathri Narasimham, Bjoern Rump, Timothy P. McNamara, Thomas H. Carr, John Rieser, and Bobby Bodenheimer. 2007. Exploring large virtual environments with an HMD when physical space is limited. In Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization (APGV’07). ACM, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. Preston Tunnell Wilson, William Kalescky, Ansel MacLaughlin, and Betsy Williams. 2016. VR locomotion: Walking> walking in place> arm swinging. In Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, Vol. 1. ACM, 243--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Zhixin Yan, Robert W. Lindeman, and Arindam Dey. 2016. Let your fingers do the walking: A unified approach for efficient short-, medium-, and long-distance travel in VR. In 2016 IEEE Symposium on 3D User Interfaces (3DUI’16). IEEE, 27--30.Google ScholarGoogle ScholarCross RefCross Ref
  133. Paul Zehr and Carlos Haridas. 2003. Modulation of cutaneous reflexes in arm muscles during walking: Further evidence of similar control mechanisms for rhythmic human arm and leg movements. Experimental Brain Research 149, 2 (2003), 260--266.Google ScholarGoogle ScholarCross RefCross Ref
  134. David J. Zielinski, Ryan P. McMahan, and Rachael B. Brady. 2011. Shadow walking: An unencumbered locomotion technique for systems with under-floor projection. In 2011 IEEE Virtual Reality Conference (VR’11). IEEE, 167--170. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Natural Walking in Virtual Reality: A Review

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Computers in Entertainment
      Computers in Entertainment   Volume 16, Issue 2
      Special Issue: Deep Learning, Ubiquitous and Toy Computing
      April 2018
      152 pages
      EISSN:1544-3574
      DOI:10.1145/3181320
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 April 2018
      • Revised: 1 December 2017
      • Accepted: 1 December 2017
      • Received: 1 April 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader