skip to main content
10.1145/3188745.3188902acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Extensor-coding

Published:20 June 2018Publication History

ABSTRACT

We devise an algorithm that approximately computes the number of paths of length k in a given directed graph with n vertices up to a multiplicative error of 1 ± ε. Our algorithm runs in time ε−2 4k(n+m) poly(k). The algorithm is based on associating with each vertex an element in the exterior (or, Grassmann) algebra, called an extensor, and then performing computations in this algebra. This connection to exterior algebra generalizes a number of previous approaches for the longest path problem and is of independent conceptual interest. Using this approach, we also obtain a deterministic 2k·poly(n) time algorithm to find a k-path in a given directed graph that is promised to have few of them. Our results and techniques generalize to the subgraph isomorphism problem when the subgraphs we are looking for have bounded pathwidth. Finally, we also obtain a randomized algorithm to detect k-multilinear terms in a multivariate polynomial given as a general algebraic circuit. To the best of our knowledge, this was previously only known for algebraic circuits not involving negative constants.

Skip Supplemental Material Section

Supplemental Material

2b-2.mp4

mp4

31.1 MB

References

  1. Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahinalp. Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):i241–i249, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Noga Alon and Shai Gutner. Balanced hashing, color coding and approximate counting. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 1–16. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications. ACM T. Algorithms, 6(3):54:1–54:12, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized counting problems. In Prosenjit Bose and Pat Morin, editors, Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, volume 2518 of Lecture Notes in Computer Science, pages 453–464. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. László Babai. Graph isomorphism in quasipolynomial time {extended abstract}. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM J. Comput., 43(1):280–299, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius: Fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67–74, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  10. Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi. Deterministically testing sparse polynomial identities of unbounded degree. Inf. Process. Lett., 109(3):187–192, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hans L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms, 14(1):1–23, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer Science, pages 646–661. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM, 60(5):34:1–34:41, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  15. arXiv:1703.03021.Google ScholarGoogle Scholar
  16. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inform. Comput., 201(2):216–231, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith, Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM J. Comput., 38(6):2526– 2547, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for path, matching, and packing problems. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 298–307, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. Nemofinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 106–115. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual Symposium on Theory of Computing (STOC), pages 151–158, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness of the vertex-cover number counts. In Proceedings of the 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 130–139, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  24. Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Inform. Process. Lett., 7(4):193–195, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  25. Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial k-trees. Theor. Comput. Sci, 281(1-2):291–309, 2002. Google ScholarGoogle ScholarCross RefCross Ref
  26. Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and constraint satisfaction. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 612–622. ACM, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1–29:60, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra Rao. Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci., 78(3):698–706, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics. Combinatorica, 32(3):289–308, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  31. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vyacheslav L. Girko. Theory of random determinants, volume 45 of Mathematics and its applications. Springer, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  33. Joshua A Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration and symmetry-breaking. In Annual International Conference on Research in Computational Molecular Biology, pages 92–106. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica, 52(2):114–132, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  35. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumeration and reliability problems. In 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 56–64. IEEE Computer Society, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zahra Razaghi Moghadam Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas Nowzari-Dalini, Elnaz Saberi Ansari, Sahar Asadi, Shahin Mohammadi, Falk Schreiber, and Ali Masoudi-Nejad. Kavosh: A new algorithm for finding network motifs. BMC Bioinformatics, 10(1):318, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  39. Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–1758, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ashraf M. Kibriya and Jan Ramon. Nearly exact mining of frequent trees in large networks. Data Min. Knowl. Disc., 27(3):478–504, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  41. Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-andcolor. In Fedor V. Fomin, editor, Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers, volume 4271 of Lecture Notes in Computer Science, pages 58–67. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer Science, pages 575–586. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun. ACM, 59(1):98–105, December 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized problems. ACM T. Algorithms, 12(3):31:1–31:18, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small subgraphs via equations. SIAM J. Discrete Math., 27(2):892–909, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Paul Leopardi et al. A generalized fft for clifford algebras. Bulletin of the Belgian Mathematical Society-Simon Stevin, 11(5):663–688, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  47. László Lovász. Flats in matroids and geometric graphs. In Combinatorial Surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45–86. Academic Press, London, 1977.Google ScholarGoogle Scholar
  48. Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci., 410(44):4471–4479, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Rudolf Mathon. A note on the graph isomorphism counting problem. Inform. Process. Lett., 8(3):131–132, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  50. Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  51. Burkhard Monien. How to find long paths efficiently. In G. Ausiello and M. Lucertini, editors, Analysis and Design of Algorithms for Combinatorial Problems, volume 109 of North-Holland Mathematics Studies, pages 239 – 254. North-Holland, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  52. Harry Nyquist, Stephen O. Rice, and John F. Riordan. The distribution of random determinants. Quart. Appl. Math., 12(2):97–104, 1954.Google ScholarGoogle ScholarCross RefCross Ref
  53. Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. MODA: An efficient algorithm for network motif discovery in biological networks. Genes Genet. Syst., 84(5):385–395, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  54. Jan Ramon, Constantin Comendant, Mostafa Haghir Chehreghani, and Yuyi Wang. Graph and network pattern mining. In Marie-Francine Moens, Juanzi Li, and Tat-Seng Chua, editors, Mining User Generated Content., pages 97–126. Chapman and Hall/CRC, 2014.Google ScholarGoogle Scholar
  55. Gian-Carlo Rota. Indiscrete thoughts. Birkhäuser, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  56. Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. Stream - A stream-based algorithm for counting motifs in dynamic graphs. In Proceedings of the 2nd International Conference on Algorithms for Computational Biology (AlCoB), pages 53–67, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. René Schott and G. Stacey Staples. Complexity of counting cycles using zeons. Comput. Math. Appl., 62(4):1828–1837, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  58. Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern detection for the analysis of motifs in networks. In Transactions on computational systems biology III, pages 89–104. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–717, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Richard P. Stanley. Enumerative Combinatorics: Volume 2. Number 62 in Cambridge studies in advanced mathematics. Cambridge University Press, New York, NY, USA, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  61. Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition, 2013. Google ScholarGoogle ScholarCross RefCross Ref
  63. Sebastian Wernicke. Efficient detection of network motifs. IEEE ACM T. Comput. BI, 3(4), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Ryan Williams. Finding paths of length k in O(2 k ) time. Inform. Process. Lett., 109(6):315–318, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted subgraphs. SIAM J. Comput., 42(3):831–854, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  66. Michał Włodarczyk. Clifford algebras meet tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.Google ScholarGoogle Scholar
  67. Meirav Zehavi. Mixing color coding-related techniques. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA), volume 9294, pages 1037–1049. Springer, 2015.Google ScholarGoogle Scholar
  68. Dmitriy Zhuk. The proof of CSP dichotomy conjecture, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  69. arXiv:1704.01914.Google ScholarGoogle Scholar
  70. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic Computation, Marseille, France, June 1979, Proceedings, pages 216– 226, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Extensor-coding

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
          June 2018
          1332 pages
          ISBN:9781450355599
          DOI:10.1145/3188745

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 June 2018

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,469of4,586submissions,32%

          Upcoming Conference

          STOC '24
          56th Annual ACM Symposium on Theory of Computing (STOC 2024)
          June 24 - 28, 2024
          Vancouver , BC , Canada

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader