skip to main content
research-article

Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity

Authors Info & Claims
Published:29 August 2018Publication History
Skip Abstract Section

Abstract

We give solutions to two fundamental computational problems in ontology-based data access with the W3C standard ontology language OWL 2 QL: the succinctness problem for first-order rewritings of ontology-mediated queries (OMQs) and the complexity problem for OMQ answering. We classify OMQs according to the shape of their conjunctive queries (treewidth, the number of leaves) and the existential depth of their ontologies. For each of these classes, we determine the combined complexity of OMQ answering and whether all OMQs in the class have polynomial-size first-order, positive existential, and nonrecursive datalog rewritings. We obtain the succinctness results using hypergraph programs, a new computational model for Boolean functions, which makes it possible to connect the size of OMQ rewritings and circuit complexity.

Skip Supplemental Material Section

Supplemental Material

References

  1. S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Agrawal, E. Allender, R. Impagliazzo, T. Pitassi, and S. Rudich. 2001. Reducing the complexity of reductions. Comput. Complex. 10, 2 (2001), 117--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Agrawal, E. Allender, and S. Rudich. 1998. Reductions in circuit complexity: An isomorphism theorem and a gap theorem. J. Comput. System Sci. 57, 2 (1998), 127--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Alon and R. Boppana. 1987. The monotone circuit complexity of boolean functions. Combinatorica 7, 1 (1987), 1--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach. Cambridge University Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. 2009. The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36 (2009), 1--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. Aspvall, M. Plass, and R. Tarjan. 1979. A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform. Process. Lett. 8, 3 (1979), 121--123.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Avigad. 2003. Eliminating definitions and Skolem functions in first-order logic. ACM Trans. Comput. Logic 4, 3 (2003), 402--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. 2011. On rules with existential variables: Walking the decidability line. Artif. Intell. 175, 9--10 (2011), 1620--1654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Bienvenu, S. Kikot, R. Kontchakov, V. V. Podolskii, V. Ryzhikov, and M. Zakharyaschev. 2017. The complexity of ontology-based data access with OWL 2 QL and bounded treewidth queries. In Proc. of the 36th ACM SIGMOD-SIGACT-SIGAI Symp. on Principles of Database Systems (PODS’17). ACM, 201--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Bienvenu, S. Kikot, and V. V. Podolskii. 2015. Tree-like queries in OWL 2 QL: Succinctness and complexity results. In Proc. of the 30th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS’15). IEEE Computer Society, 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Bienvenu, C. Lutz, and F. Wolter. 2013. First-order rewritability of atomic queries in horn description logics. In Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence (IJCAI’13). IJCAI/AAAI, 754--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Bienvenu, M. Ortiz, and M. Simkus. 2015. Regular path queries in lightweight description logics: Complexity and algorithms. J. Artif. Intell. Res. (JAIR) 53 (2015), 315--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. 2013. Tractable queries for lightweight description logics. In Proc. of the 23nd Int. Joint Conf. on Artificial Intelligence (IJCAI’13). IJCAI/AAAI, 768--774. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Bienvenu and R. Rosati. 2015. Query-based comparison of OBDA specifications. In Proc. of the 28th Int. Workshop on Description Logics, DL 2015 (CEUR), Vol. 1350. CEUR-WS, 55--66.Google ScholarGoogle Scholar
  16. M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. 2014. Ontology-based data access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1--33:44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Botoeva, D. Calvanese, V. Santarelli, D. F. Savo, A. Solimando, and G. Xiao. 2016. Beyond OWL 2 QL in OBDA: Rewritings and approximations. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI’16). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Brandstädt, V. B. Le, and J. P. Spinrad. 1999. Graph Classes: A Survey. SIAM, Philadelphia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Bretto. 2013. Hypergraph Theory: An Introduction. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Calì, G. Gottlob, and T. Lukasiewicz. 2012. A general datalog-based framework for tractable query answering over ontologies. J. Web Semantics 14 (2012), 57--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Calì, G. Gottlob, and A. Pieris. 2012. Towards more expressive ontology languages: The query answering problem. Artif. Intell. 193 (2012), 87--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F. Savo. 2011. The MASTRO system for ontology-based data access. Semantic Web 2, 1 (2011), 43--53. Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. 2007. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason. 39, 3 (2007), 385--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Chandra and P. Merlin. 1977. Optimal implementation of conjunctive queries in relational data bases. In Conf. Record of the 9th Annual ACM Symp. on Theory of Computing (STOC’77). ACM, 77--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Chekuri and A. Rajaraman. 2000. Conjunctive query containment revisited. Theor. Comput. Sci. 239, 2 (2000), 211--229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Chortaras, D. Trivela, and G. Stamou. 2011. Optimized query rewriting for OWL 2 QL. In Proc. of the 23rd Int. Conf. on Automated Deduction (CADE-23) (LNCS), Vol. 6803. Springer, 192--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Civili and R. Rosati. 2012. A broad class of first-order rewritable tuple-generating dependencies. In Proc. of the 2nd Int. Datalog 2.0 Workshop (LNCS), Vol. 7494. Springer, 68--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Console, J. Mora, R. Rosati, V. Santarelli, and D. F. Savo. 2014. Effective computation of maximal sound approximations of description logic ontologies. In Proc. of the 13th Int. Semantic Web Conf. (ISWC’14), Part II (LNCS), Vol. 8797. Springer, 164--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. A. Cook. 1971. Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18, 1 (1971), 4--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. 2012. Query rewriting for Horn-SHIQ plus rules. In Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI’12). AAAI, 726--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Flament. 1978. Hypergraphes arborés. Discrete Math. 21, 3 (1978), 223--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Flum and M. Grohe. 2006. Parameterized Complexity Theory. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk, G. Xiao, Ö. Özçep, and R. Rosati. 2015. Optique: Zooming in on big data. IEEE Comput. 48, 3 (2015), 60--67.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick, and M. Zakharyaschev. 2014. The price of query rewriting in ontology-based data access. Artif. Intell. 213 (2014), 42--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Gottlob, N. Leone, and F. Scarcello. 1999. Computing LOGCFL certificates. In Proc. of the 26th Int. Coll. on Automata, Languages 8 Programming (ICALP’99) (LNCS), Vol. 1644. Springer, 361--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. G. Gottlob, N. Leone, and F. Scarcello. 2001. The complexity of acyclic conjunctive queries. J. ACM 48, 3 (2001), 431--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. G. Gottlob, M. Manna, and A. Pieris. 2015. Polynomial rewritings for linear existential rules. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI’15). AAAI, 2992--2998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. G. Gottlob, G. Orsi, and A. Pieris. 2011. Ontological queries: Rewriting and optimization. In Proc. of the 27th Int. Conf. on Data Engineering (ICDE’11). IEEE Computer Society, 2--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. G. Gottlob and T. Schwentick. 2012. Rewriting ontological queries into small nonrecursive Datalog programs. In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation 8 Reasoning (KR’12). AAAI, 254--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. A. Greibach. 1973. The hardest context-free language. SIAM J. Comput. 2, 4 (1973), 304--310.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. Grigni and M. Sipser. 1992. Monotone complexity. In Proc. of the London Mathematical Society Symp. on Boolean Function Complexity. Cambridge University Press, 57--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Grohe, T. Schwentick, and L. Segoufin. 2001. When is the evaluation of conjunctive queries tractable? In Proc. of the 33rd Annual ACM Symp. on Theory of Computing (STOC’01). ACM, 657--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. V. Gutiérrez-Basulto, Y. Ibáñez-García, R. Kontchakov, and E. V. Kostylev. 2015. Queries with negation and inequalities over lightweight ontologies. J. Web Semantics 35 (2015), 184--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. P. Hansen, C. Lutz, I. Seylan, and F. Wolter. 2015. Efficient query rewriting in the description logic EL and beyond. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI’15). AAAI, 3034--3040. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. A. Huffman. 1952. A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 40, 9 (1952), 1098--1101.Google ScholarGoogle ScholarCross RefCross Ref
  46. N. Immerman. 1988. Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 5 (1988), 935--938. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. S. Johnson. 1990. A catalog of complexity classes. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A). 67--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. D. S. Johnson and A. C. Klug. 1982. Testing containment of conjunctive queries under functional and inclusion dependencies. In Proc. of the ACM Symp. on Principles of Database Systems (PODS’82). ACM, 164--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Jukna. 2012. Boolean Function Complexity — Advances and Frontiers. Algorithms and Combinatorics, Vol. 27. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Kaminski, Y. Nenov, and B. Cuenca Grau. 2014. Datalog rewritability of disjunctive datalog programs and its applications to ontology reasoning. In Proc. of the 28th AAAI Conference on Artificial Intelligence (AAAI’14). AAAI, 1077--1083. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Karchmer and A. Wigderson. 1988. Monotone circuits for connectivity require super-logarithmic depth. In Proc. of the 20th Annual ACM Symp. on Theory of Computing (STOC’88). ACM, 539--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. E. Kharlamov, D. Bilidas, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, M. Rezk, M. Skjæveland, A. Soylu, G. Xiao, D. Zheleznyakov, M. Giese, Y. Ioannidis, Y. Kotidis, M. Koubarakis, and A. Waaler. 2017. Ontology based data access in Statoil. J. Web Semantics 44 (2017), 3--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt, Ö. Özçep, M. Roshchin, N. Solomakhina, A. Soylu, C. Svingos, S. Brandt, M. Giese, Y. Ioannidis, S. Lamparter, R. Möller, Y. Kotidis, and A. Waaler. 2017. Semantic access to streaming and static data at Siemens. J. Web Semantics 44 (2017), 54--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2012. Exponential lower bounds and separation for query rewriting. In Proc. of the 39th Int. Coll. on Automata, Languages 8 Programming (ICALP’12) (LNCS), Vol. 7392. Springer, 263--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. 2014. On the succinctness of query rewriting over shallow ontologies. In Proc. of the Joint Meeting of the 23rd EACSL Annual Conf. on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symp. on Logic in Computer Science (LICS) (CSL-LICS’14). ACM, 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2011. On (in)tractability of OBDA with OWL 2 QL. In Proc. of the 24th Int. Workshop on Description Logics (DL’11), Vol. 745. CEUR-WS, 224--234.Google ScholarGoogle Scholar
  57. S. Kikot, R. Kontchakov, and M. Zakharyaschev. 2012. Conjunctive query answering with OWL 2 QL. In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation 8 Reasoning (KR’12). AAAI, 275--285. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. König, M. Leclère, and M.-L. Mugnier. 2015. Query rewriting for existential rules with compiled preorder. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI’15). AAAI, 3106--3112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. 2015. Sound, complete and minimal UCQ-rewriting for existential rules. Semantic Web 6, 5 (2015), 451--475.Google ScholarGoogle ScholarCross RefCross Ref
  60. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. 2010. The combined approach to query answering in DL-Lite. In Proc. of the 12th Int. Conf.  on Principles of Knowledge Representation 8 Reasoning (KR’10). AAAI, 247--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. 2014. Answering SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of the 13th Int. Semantic Web Conf. (ISWC’14), Part I (LNCS), Vol. 8796. Springer, 552--567. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. E. V. Kostylev, J. L. Reutter, and D. Vrgo. 2015. XPath for DL ontologies. In Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI’15). AAAI, 1525--1531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. 2015. Mapping analysis in ontology-based data access: Algorithms and complexity. In Proc. of the 14th Int. Semantic Web Conf. (ISWC’15) (LNCS), Vol. 9366. Springer, 217--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. L. Libkin. 2004. Elements of Finite Model Theory. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. C. Lutz. 2008. The complexity of conjunctive query answering in expressive description logics. In Proc. of the 4th Int. Joint Conf. on Automated Reasoning (IJCAR’08) (LNAI). Springer, 179--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. C. Lutz, R. Piro, and F. Wolter. 2011. Description logic TBoxes: Model-theoretic characterizations and rewritability. In Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11). IJCAI/AAAI, 983--988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. C. Lutz, I. Seylan, D. Toman, and F. Wolter. 2013. The combined approach to OBDA: Taming role hierarchies using filters. In Proc. of the 12th Int. Semantic Web Conf. (ISWC’13), Part I (LNCS), Vol. 8218. Springer, 314--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. C. Lutz, D. Toman, and F. Wolter. 2009. Conjunctive query answering in the description logic EL using a relational database system. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI’09). 2070--2075. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. J. Mora, R. Rosati, and Ó. Corcho. 2014. Kyrie2: Query rewriting under extensional constraints in ELHIO. In Proc. of the 13th Int. Semantic Web Conf. (ISWC’14) (LNCS), Vol. 8796. Springer, 568--583. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. H. Pérez-Urbina, B. Motik, and I. Horrocks. 2009. A comparison of query rewriting techniques for DL-lite. In Proc. of the 22nd Int. Workshop on Description Logics, DL 2009 (CEUR), Vol. 477. CEUR-WS.Google ScholarGoogle Scholar
  71. H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, and E. Sirin. 2012. Evaluation of query rewriting approaches for OWL 2. In Proc. of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012) (CEUR), Vol. 943. CEUR-WS.Google ScholarGoogle Scholar
  72. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. 2008. Linking data to ontologies. J. Data Semantics 10 (2008), 133--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. R. Raz and A. Wigderson. 1992. Monotone circuits for matching require linear depth. J. ACM 39, 3 (1992), 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. A. Razborov. 1985. Lower bounds for the monotone complexity of some boolean functions. Dokl. Akad. Nauk SSSR 281, 4 (1985), 798--801.Google ScholarGoogle Scholar
  75. A. A. Razborov. 1991. Lower bounds for deterministic and nondeterministic branching programs. In Proc. of the 8th Int. Symp. on Fundamentals of Computation Theory (FCT’91) (LNCS), Vol. 529. Springer, 47--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. Rodriguez-Muro and D. Calvanese. 2012. High performance query answering over DL-Lite ontologies. In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation 8 Reasoning (KR’12). AAAI, 308--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. 2013. Ontology-based data access: Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC’13), Part I (LNCS), Vol. 8218. Springer, 558--573. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. R. Rosati. 2007. The limits of querying ontologies. In Proc. of the 11th Int. Conf. on Database Theory (ICDT’07) (LNCS), Vol. 4353. Springer, 164--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. R. Rosati. 2012. Prexto: Query rewriting under extensional constraints in DL-Lite. In Proc. of the 9th Extended Semantic Web Conf. (EWSC’12) (LNCS), Vol. 7295. Springer, 360--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. R. Rosati and A. Almatelli. 2010. Improving query answering over DL-Lite ontologies. In Proc. of the 12th Int. Conf. on Principles of Knowledge Representation 8 Reasoning (KR’10). AAAI, 290--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. J. F. Sequeda, M. Arenas, and D. P. Miranker. 2014. OBDA: Query rewriting or materialization? In practice, both! In Proc. of the 13th Int. Semantic Web Conf. (ISWC’14), Part I (LNCS), Vol. 8796. Springer, 535--551. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. I. H. Sudborough. 1978. On the tape complexity of deterministic context-free languages. J. ACM 25, 3 (1978), 405--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. R. Szelepcsényi. 1988. The method of forced enumeration for nondeterministic automata. Acta Inform. 26, 3 (1988), 279--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. M. Thomazo. 2013. Compact rewritings for existential rules. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13). IJCAI/AAAI, 1125--1131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. M. Vardi. 1982. The complexity of relational query languages (extended abstract). In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82). ACM, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. H. Venkateswaran. 1991. Properties that characterize LOGCFL. J. Comput. System Sci. 43, 2 (1991), 380--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. H. Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. M. Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on Very Large Data Bases (VLDB’81). IEEE Computer Society, 82--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Y. Zhou, B. Cuenca Grau, Y. Nenov, M. Kaminski, and I. Horrocks. 2015. PAGOdA: Pay-as-you-go ontology query answering using a Datalog reasoner. J. Artif. Intell. Res. (JAIR) 54 (2015), 309--367. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Journal of the ACM
            Journal of the ACM  Volume 65, Issue 5
            October 2018
            299 pages
            ISSN:0004-5411
            EISSN:1557-735X
            DOI:10.1145/3274534
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 29 August 2018
            • Accepted: 1 March 2018
            • Revised: 1 January 2018
            • Received: 1 April 2016
            Published in jacm Volume 65, Issue 5

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format