skip to main content

Algorithm 989: perm_mateda: A Matlab Toolbox of Estimation of Distribution Algorithms for Permutation-based Combinatorial Optimization Problems

Authors Info & Claims
Published:26 July 2018Publication History
Skip Abstract Section

Abstract

Permutation problems are combinatorial optimization problems whose solutions are naturally codified as permutations. Due to their complexity, motivated principally by the factorial cardinality of the search space of solutions, they have been a recurrent topic for the artificial intelligence and operations research community. Recently, among the vast number of metaheuristic algorithms, new advances on estimation of distribution algorithms (EDAs) have shown outstanding performance when solving some permutation problems. These novel EDAs implement distance-based exponential probability models such as the Mallows and Generalized Mallows models. In this article, we present a Matlab package, perm_mateda, of estimation of distribution algorithms on permutation problems, which has been implemented as an extension to the Mateda-2.0 toolbox of EDAs. Particularly, we provide implementations of the Mallows and Generalized Mallows EDAs under the Kendall’s-τ, Cayley, and Ulam distances. In addition, four classical permutation problems have also been implemented: Traveling Salesman Problem, Permutation Flowshop Scheduling Problem, Linear Ordering Problem, and Quadratic Assignment Problem.

Skip Supplemental Material Section

Supplemental Material

References

  1. Juan A. Aledo, Jose A. Gomez, and David Molina. 2016. Using metaheuristic algorithms for parameter estimation in generalized Mallows models. Appl. Soft Comput. 38 (2016), 308--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Juan A. Aledo, Jose A. Gomez, and Alejandro Rosete. 2017. Partial evaluation in rank aggregation problems. Comput. Operat. Res. 78 (2017), 299--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Laura Anton-Sanchez, Concha Bielza, and Pedro Larrañaga. 2017. Network design through forests with degree- and role-constrained minimum spanning trees. J. Heurist. 23, 1 (01 Feb 2017), 31--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ruben Armañanzas, Iñaki Inza, Roberto Santana, Yvan Saeys, Jose Flores, Jose Lozano, Yves Peer, Rosa Blanco, Victor Robles, Concha Bielza, and Pedro Larranaga. 2008. A review of estimation of distribution algorithms in bioinformatics. BioData Min. 1, 1 (2008), 6.Google ScholarGoogle ScholarCross RefCross Ref
  5. John E. Beasley, Mohan Krishnamoorthy, Yazid M. Sharaiha, and D. Abramson. 2000. Scheduling aircraft landings—The static case. Transport. Sci. 34, 2 (2000), 180--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alexander E. I. Brownlee, Martin Pelikan, John A. W. McCall, and Andrei Petrovski. 2008. An application of a multivariate estimation of distribution algorithm to cancer chemotherapy. In Proceedings of the 10th Genetic and Evolutionary Computation Conference (GECCO’08), C. Ryan and M. Keijzer (Eds.). 463--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and Leonidas S. Pitsoulis. 1998. The Quadratic Assignment Problem. Springer.Google ScholarGoogle Scholar
  8. Josu Ceberio. 2014. Solving Permutation Problems with Estimation of Distribution Algorithms and Extensions Thereof. Ph.D. Dissertation. Faculty of Computer Science, University of the Basque Country.Google ScholarGoogle Scholar
  9. Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A. Lozano. 2012. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Progr. Artific. Intell. 1, 1 (Jan. 2012), 103--117.Google ScholarGoogle Scholar
  10. Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A. Lozano. 2014. A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Trans. Evol. Comput. 18, 2 (Apr. 2014), 286--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A. Lozano. 2015. A review of distances for the mallows and generalized mallows estimation of distribution algorithms. Comput. Optim. Appl. (Mar. 2015), 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano. 2011a. Introducing the mallows model on estimation of distribution algorithms. In Proceedings of International Conference on Neural Information Processing (ICONIP’11) (Lecture Notes in Computer Science), Bao-Liang Lu, Liqing Zhang, and James T. Kwok (Eds.). Springer, 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Josu Ceberio, Alexander Mendiburu, and Jose Antonio Lozano. 2011b. A preliminary study on EDAs for permutation problems based on marginal-based models. In Proceeding of the 13th Annual Conference on Genetic and Evolutionary Computation, Natalio Krasnogor and Pier Luca Lanzi (Eds.). ACM, 609--616. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano. 2013. The plackett-luce ranking model on permutation-based optimization problems. In Proceedings of the IEEE Congress on Evolutionary Computation. 494--501.Google ScholarGoogle Scholar
  15. Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano. 2014. The linear ordering problem revisited. Eur. J. Operat. Res. 241, 3 (2014), 686--696.Google ScholarGoogle ScholarCross RefCross Ref
  16. Josu Ceberio, Alexander Mendiburu, and Jose A. Lozano. 2015. Kernels of mallows models for solving permutation-based problems. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO’15). ACM, New York, NY, 505--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jean C. de Borda. 1781. Memoire sur les elections au scrutin. Histoire de l’Academie Royale des Science. L'Imprimerie Royale.Google ScholarGoogle Scholar
  18. Michael Deza, Liens-ecole Normale Supérieure, and Tayuan Huang. 1998. Metrics on permutations, a survey. In Journal of Combinatorics, Information and System Sciences. Citeseer.Google ScholarGoogle Scholar
  19. Persi Diaconis. 1988. Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA.Google ScholarGoogle Scholar
  20. Michael A. Fligner and Joseph S. Verducci. 1986. Distance based ranking models. J. Roy. Stat. Soc. 48, 3 (1986), 359--369.Google ScholarGoogle Scholar
  21. Michael A. Fligner and Joseph S. Verducci. 1988. Multistage ranking models. J. Amer. Stat. Assoc. 83, 403 (1988), 892--901.Google ScholarGoogle ScholarCross RefCross Ref
  22. Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman 8 Co., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. David E. Goldberg and Robert Lingle Jr. 1985. Alleles loci and the traveling salesman problem. In Proceedings of an International Conference on Genetic Algorithms and Their Applications, Vol. 154. Lawrence Erlbaum, Hillsdale, NJ, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jatinder N. D. Gupta and Edward F. Stafford. 2006. Flow shop scheduling research after five decades. Eur. J. Operat. Res. 169, 3 (2006), 699--711.Google ScholarGoogle ScholarCross RefCross Ref
  25. Jonathan Huang, Carlos Guestrin, and Leonidas Guibas. 2009. Fourier theoretic probabilistic inference over permutations. J. Mach. Learn. Res. 10 (May 2009), 997--1070. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ekhine Irurozki. 2014. Sampling and Learning Distance-based Probability Models for Permutation Spaces. Ph.D. Dissertation. Faculty of Computer Science, University of the Basque Country.Google ScholarGoogle Scholar
  27. Ekhine Irurozki, Borja Calvo, and Jose A. Lozano. 2014. Mallows model under the ulam distance: A feasible combinatorial approach. In Proceedings of the Analysis on Rank Data Workshop on Neural Information Processing System (NIPS’14). University of the Basque Country.Google ScholarGoogle Scholar
  28. Ekhine Irurozki, Borja Calvo, and Jose A. Lozano. 2016. PerMallows: An R package for mallows and generalized mallows models. J. Stat. Softw. 71, 12 (2016), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ekhine Irurozki, Borja Calvo, and Jose A. Lozano. 2018. Sampling and learning mallows and generalized mallows models under the cayley distance. Methodol. Comput. Appl. Probabil. 20, 1 (2018), 1--35.Google ScholarGoogle ScholarCross RefCross Ref
  30. Xiao-Peng Ji, Xian-Bin Cao, Wen-Bo Du, and Ke Tang. 2017. An evolutionary approach for dynamic single-runway arrival sequencing and scheduling problem. Soft Comput. 21, 23 (2017), 7021--7037. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xiao-Peng Ji, Xian-Bin Cao, and Ke Tang. 2016. Sequence searching and evaluation: A unified approach for aircraft arrival sequencing and scheduling problems. Memet. Comput. 8, 2 (June 2016), 109--123.Google ScholarGoogle ScholarCross RefCross Ref
  32. Shan Jiang, Ahmet K. Ziver, Jonathan N. Carter, Christopher C. Pain, Antony J. H. Goddard, Simon Franklin, and H. J. Phillips. 2006. Estimation of distribution algorithms for nuclear reactor fuel management optimisation. Ann. Nucl. Energy 33, 11--12 (2006), 1039--1057.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tjalling C. Koopmans and Martin J. Beckmann. 1955. Assignment Problems and the Location of Economic Activities. Cowles Foundation Discussion Papers 4. Cowles Foundation for Research in Economics, Yale University.Google ScholarGoogle Scholar
  34. Pedro Larrañaga and Jose A. Lozano. 2002. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers.Google ScholarGoogle Scholar
  35. Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, and Endika Bengoetxea. 2006. Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing). Springer-Verlag New York, Inc., Secaucus, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Duncan Luce. 1959. Individual Choice Behavior. Wiley, New York.Google ScholarGoogle Scholar
  37. Colin L. Mallows. 1957. Non-null ranking models. Biometrika 44, 1--2 (1957), 114--130.Google ScholarGoogle ScholarCross RefCross Ref
  38. Bhushan Mandhani and Marina Meila. 2009. Tractable search for learning exponential models of rankings. J. Mach. Learn. Res. 5 (2009), 392--399.Google ScholarGoogle Scholar
  39. John McCall, Alexander E. I. Brownlee, and Siddhartha Shakya. 2012. Applications of distribution estimation using markov network modelling (DEUM). In Markov Networks in Evolutionary Computation, S. Shakya and R. Santana (Eds.). Springer, 193--207.Google ScholarGoogle Scholar
  40. Alexander Mendiburu, Jose Miguel-Alonso, Jose A. Lozano, Miren Ostra, and Carlos Ubide. 2006. Parallel EDAs to create multivariate calibration models for quantitative chemical applications. J. Parallel Distrib. Comput. 66, 8 (2006), 1002--1013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rebecca J. Parsons, Stephanie Forrest, and Christian Burks. 1995. Genetic algorithms, operators, and DNA fragment assembly. Mach. Learn. 21, 1-2 (1995), 11--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Martin Pelikan, David E. Goldberg, and Fernando G. Lobo. 2002. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21, 1 (2002), 5--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ricardo Perez-Rodriguez and Arturo Hernandez-Aguirre. 2017. Un algoritmo de estimacion de distribuciones copulado con la distribucion generalizada de mallows para el problema de ruteo de autobuses escolares con seleccin de paradas. Revista Iberoamericana de Automatica e Informatica Industrial 14, 3 (2017), 288--298.Google ScholarGoogle ScholarCross RefCross Ref
  44. Robin L. Plackett. 1975. The analysis of permutations. J. Roy. Stat. Soc. 24, 10 (1975), 193--202.Google ScholarGoogle Scholar
  45. Ramon Sagarna and Jose A. Lozano. 2006. Scatter search in software testing, comparison and collaboration with estimation of distribution algorithms. Eur. J. Operat. Res. 169, 2 (2006), 392--412.Google ScholarGoogle ScholarCross RefCross Ref
  46. Josian Santamaria, Josu Ceberio, Roberto Santana, Alexander Mendiburu, and Jose A. Lozano. 2015. Introducing mixtures of generalized mallows in estimation of distribution algorithms. In Proceedings of the X Congreso Español de Metaheuristicas, Algoritmos Evolutivos y Bioinspirados (MAEB’15). 19--25.Google ScholarGoogle Scholar
  47. Roberto Santana, Concha Bielza, Pedro Larranaga, Jose A. Lozano, Carlos Echegoyen, Alexander Mendiburu, Ruben Armananzas, and Siddartha Shakya. 2010. Mateda-2.0: Estimation of distribution algorithms in MATLAB. J. Stat. Softw. 35, 7 (2010), 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  48. Marta Soto, Alberto Ochoa, Yasser González-Fernández, Yanely Milanés, Adriel Álvarez, Diana Carrera, and Ernesto Moreno. 2012. Vine estimation of distribution algorithms with application to molecular docking. In Markov Networks in Evolutionary Computation, S. Shakya and R. Santana (Eds.). Springer, 175--190.Google ScholarGoogle Scholar
  49. Paolo Toth and Daniele Vigo. 2001. The Vehicle Routing Problem. Society for Industrial and Applied Mathematics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Shigeyoshi Tsutsui and Gordon Wilson. 2004. Solving capacitated vehicle routing problems using edge histogram based sampling algorithms. In Proceedings of the IEEE Conference on Evolutionary Computation. 1150--1157.Google ScholarGoogle ScholarCross RefCross Ref
  51. Bo Yuan, Maria E. Orlowska, and Shazia Wasim Sadiq. 2007. Finding the optimal path in 3D spaces using EDAs—The wireless sensor networks scenario. In Adaptive and Natural Computing Algorithms. Springer, 536--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Murilo Zangari, Alexander Mendiburu, Roberto Santana, and Aurora Pozo. 2017. Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem. Info. Sci. 397 (2017), 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Algorithm 989: perm_mateda: A Matlab Toolbox of Estimation of Distribution Algorithms for Permutation-based Combinatorial Optimization Problems

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 44, Issue 4
            December 2018
            305 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/3233179
            Issue’s Table of Contents

            Copyright © 2018 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 July 2018
            • Accepted: 1 April 2018
            • Revised: 1 December 2017
            • Received: 1 July 2016
            Published in toms Volume 44, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader