skip to main content
research-article

T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm

Published:23 October 2018Publication History
Skip Abstract Section

Abstract

Quantum circuits for basic mathematical functions such as the square root are required to implement scientific computing algorithms on quantum computers. Quantum circuits that are based on Clifford+T gates can easily be made fault tolerant, but the T gate is very costly to implement. As a result, reducing T-count has become an important optimization goal. Further, quantum circuits with many qubits are difficult to realize, making designs that save qubits and produce no garbage outputs desirable. In this work, we present a T-count optimized quantum square root circuit with only 2 ṡ n + 1 qubits and no garbage output. To make a fair comparison against existing work, the Bennett’s garbage removal scheme is used to remove garbage output from existing works. We determined that our proposed design achieves an average T-count savings of 43.44%, 98.95%, 41.06%, and 20.28% as well as qubit savings of 85.46%, 95.16%, 90.59%, and 86.77% compared to existing works.

References

  1. M. Amy, D. Maslov, and M. Mosca. 2014. Polynomial-time T-depth optimization of clifford+T circuits via matroid partitioning. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 33, 10 (Oct. 2014), 1476--1489.Google ScholarGoogle Scholar
  2. M. Amy, D. Maslov, M. Mosca, and M. Roetteler. 2013. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 32, 6 (June 2013), 818--830. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. V. AnanthaLakshmi and Gnanou Florence Sudha. 2017. A novel power efficient 0.64-GFlops fused 32-bit reversible floating point arithmetic unit architecture for digital signal processing applications. Microprocess. Microsyst. 51, Suppl. C (2017), 366--385.Google ScholarGoogle ScholarCross RefCross Ref
  4. S Beauregard. 2003. Circuit for shor’s algorithm using 2n+3 gubits. Quant. Inf. Comput. 3, 2 (Mar. 2003), 175--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. H. Bennett. 1973. Logical reversibility of computation. IBM J. Res. Dev. 17, 6 (Nov. 1973), 525--532. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. K. Bhaskar, S. Hadfield, A. Papageorgiou, and I. Petras. 2016. Quantum algorithms and circuits for scientific computing. Quant. Inf. Comput. 16, 3--4 (Mar. 2016), 197--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Donny Cheung, Dmitri Maslov, Jimson Mathew, and Dhiraj K. Pradhan. 2008. Design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In Proceedings of the 3rd Workshop on the Theory of Quantum Computation, Communication, and Cryptography. Springer, Berlin, 96--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. J. Devitt, A. M. Stephens, W. J. Munro, and K. Nemoto. 2013. Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4, Article 2524 (Oct. 2013), 2524 pages. arxiv:quant-ph/1212.4934Google ScholarGoogle Scholar
  9. Dave Wecker et al. 2016. Language-Integrated Quantum Operations: LIQUi|>. Retrieved from https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui/.Google ScholarGoogle Scholar
  10. Peter Selinger et al. 2016. The Quipper System. Retrieved from http://www.mathstat.dal.ca/selinger/quipper/doc/.Google ScholarGoogle Scholar
  11. David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. 2014. An algorithm for the T-count. Quant. Inf. Comput. 14, 15--16 (2014), 1261--1276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Guodong, S. Shenghui, and X. Maozhi. 2014. Quantum algorithm for polynomial root finding problem. In Proceedings of the 2014 10th International Conference on Computational Intelligence and Security. 469--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Sean Hallgren. 2007. Polynomial-time quantum algorithms for pell’s equation and the principal ideal problem. J. ACM 54, 1, Article 4 (Mar. 2007), 19 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. IBM. 2017. Quantum Computing—IBM Q. Retrieved from https://www.research.ibm.com/ibm-q/.Google ScholarGoogle Scholar
  15. N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto. 2012. Layered architecture for quantum computing. Phys. Rev. X 2, 3 (Jul. 2012), 031007.Google ScholarGoogle Scholar
  16. Igor L. Markov and Mehdi Saeedi. 2012. Constant-optimized quantum circuits for modular multiplication and exponentiation. Quant. Inf. Comput. 12, 5--6 (2012), 361--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Michael Miller, Mathias Soeken, and Rolf Drechsler. 2014. Mapping NCV circuits to optimized clifford+T circuits. In Reversible Computation, Shigeru Yamashita and Shin-ichi Minato (Eds.). Lecture Notes in Computer Science, Vol. 8507. Springer International Publishing, Berlin, 163--175.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim. 2014. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 2 (Feb. 2014), 022317.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Montanaro. 2017. Quantum pattern matching fast on average. Algorithmica 77, 1 (Jan. 2017), 16--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Muñoz-Coreas and H. Thapliyal. 2017. T-count optimized design of quantum integer multiplication. ArXiv e-prints (June 2017). arxiv:quant-ph/1706.05113Google ScholarGoogle Scholar
  21. A. Paler and S. J. Devitt. 2015. An introduction into fault-tolerant quantum computing. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC’15). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J. Devitt. 2017. Fault-tolerant, high-level quantum circuits: Form, compilation and description. Quant. Sci. Technol. 2, 2 (2017), 025003. http://stacks.iop.org/2058-9565/2/i=2/a=025003Google ScholarGoogle ScholarCross RefCross Ref
  23. I. Polian and A. G. Fowler. 2015. Design automation challenges for scalable quantum architectures. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC’15). 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Proos and C. Zalka. 2003. Shor’s discrete logarithm quantum algorithm for elliptic curves. Quant. Inf. Comput. 3, 4 (Jul. 2003), 317--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Samavi, A. Sadrabadi, and A. Fanian. 2008. Modular array structure for non-restoring square root circuit. J. Syst. Arch. 54, 10 (2008), 957--966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Sultana and K. Radecka. 2011. Reversible implementation of square-root circuit. In Proceedings of the 2011 18th IEEE International Conference on Electronics, Circuits, and Systems. 141--144.Google ScholarGoogle Scholar
  27. Himanshu Thapliyal. 2016. Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. In Transactions on Computational Science XXVII. Springer, 10--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Himanshu Thapliyal and Nagarajan Ranganathan. 2013. Design of efficient reversible logic-based binary and BCD adder circuits. J. Emerg. Technol. Comput. Syst. 9, 3, Article 17 (Oct. 2013), 31 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. van Dam and S. Hallgren. 2000. Efficient quantum algorithms for shifted quadratic character problems. eprint arXiv:quant-ph/0011067 (Nov. 2000). arXiv:quant-ph/0011067Google ScholarGoogle Scholar
  30. W. van Dam and G. Seroussi. 2002. Efficient quantum algorithms for estimating gauss sums. eprint arXiv:quant-ph/0207131 (July 2002). arXiv:quant-ph/0207131Google ScholarGoogle Scholar
  31. Wim van Dam and Igor E. Shparlinski. 2008. Classical and Quantum Algorithms for Exponential Congruences. Springer, Berlin, 1--10.Google ScholarGoogle Scholar
  32. Paul Webster, Stephen D. Bartlett, and David Poulin. 2015. Reducing the overhead for quantum computation when noise is biased. Phys. Rev. A 92, 6 (Dec. 2015), 062309.Google ScholarGoogle ScholarCross RefCross Ref
  33. Xinlan Zhou, Debbie W. Leung, and Isaac L. Chuang. 2000. Methodology for quantum logic gate construction. Phys. Rev. A 62, 5 (Oct. 2000), 052316.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Journal on Emerging Technologies in Computing Systems
          ACM Journal on Emerging Technologies in Computing Systems  Volume 14, Issue 3
          July 2018
          150 pages
          ISSN:1550-4832
          EISSN:1550-4840
          DOI:10.1145/3287773
          • Editor:
          • Yuan Xie
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 23 October 2018
          • Accepted: 1 August 2018
          • Revised: 1 May 2018
          • Received: 1 November 2017
          Published in jetc Volume 14, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format