skip to main content
10.1145/3295500.3356142acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Public Access

Consensus equilibrium framework for super-resolution and extreme-scale CT reconstruction

Published:17 November 2019Publication History

ABSTRACT

Computed tomography (CT) image reconstruction is a crucial technique for many imaging applications. Among various reconstruction methods, Model-Based Iterative Reconstruction (MBIR) enables super-resolution with superior image quality. MBIR, however, has a high memory requirement that limits the achievable image resolution, and the parallelization for MBIR suffers from limited scalability. In this paper, we propose Asynchronous Consensus MBIR (AC-MBIR) that uses Consensus Equilibrium (CE) to provide a super-resolution algorithm with a small memory footprint, low communication overhead and a high scalability. Super-resolution experiments show that AC-MBIR has a 6.8 times smaller memory footprint and 16 times more scalability, compared with the state-of-the-art MBIR implementation, and maintains a 100% strong scaling efficiency at 146880 cores. In addition, AC-MBIR achieves an average bandwidth of 3.5 petabytes per second at 587520 cores.

References

  1. S. Ahn and J. A. Fessler. 2003. Globally Convergent Image Reconstruction for Emission Tomography Using Relaxed Ordered Subsets Algorithms. IEEE Transactions on Medical Imaging 22, 5 (May 2003), 613--626. Google ScholarGoogle ScholarCross RefCross Ref
  2. GE Aviation. 2016. Space Age Ceramics Are Aviation's New Cup Of Tea. https://www.ge.com/reports/space-age-cmcs-aviations-new-cup-of-tea/. (2016).Google ScholarGoogle Scholar
  3. T. Balke, S. Majee, G. T. Buzzard, S. Poveromo, P. Howard, M. A. Groeber, J. McClure, and C. A. Bouman. 2018. Separable Models for cone-beam MBIR Reconstruction. In Computational Imaging XVI, Burlingame, California, USA, 28 Jan 2018 - 1 Feb 2018.Google ScholarGoogle Scholar
  4. G. Buzzard, S. Chan, S. Sreehari, and C. Bouman. 2018. Plug-and-Play Unplugged: Optimization-Free Reconstruction Using Consensus Equilibrium. SIAM Journal on Imaging Sciences 11, 3 (2018), 2001--2020. arXiv:https://doi.org/10.1137/17M1122451 Google ScholarGoogle ScholarCross RefCross Ref
  5. H. Erdogan and J. Fessler. 1999. Ordered Subsets Algorithms for Transmission Tomography. Physics in Medicine & Biology 44(11) (1999).Google ScholarGoogle Scholar
  6. J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange. 1997. Grouped-Coordinate Ascent Algorithms for Penalized-Likelihood Transmission Image Reconstruction. IEEE Transactions on Medical Imaging 16(2) (1997).Google ScholarGoogle Scholar
  7. J. A. Fessler and D. Kim. 2011. Axial Block Coordinate Descent (ABCD) Algorithm for X-ray CT Image Reconstruction. In 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine.Google ScholarGoogle Scholar
  8. M. C. Fonseca, B. H. S. Araujo, C. S. B. Dias, N. L. Archilha, D. P. A. Neto, E. Cavalheiro, H. Westfahl, A. J. R. da Silva, and K. G. Franchini. 2018. High-Resolution Synchrotron-Based X-ray Microtomography as A Tool to Unveil The Three-Dimensional Neuronal Architecture of The Brain. Scientific Reports 8, 1 (Aug 2018), 12074.Google ScholarGoogle ScholarCross RefCross Ref
  9. C. Fournier, F. Jolivet, L. Denis, N. Verrier, E. Thiebaut, C. Allier, and T. Fournel. 2017. Pixel Super-Resolution in Digital Holography by Regularized Reconstruction. Applied Optics 56, 1 (Jan 2017), 69--77. Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Ha and K. Mueller. 2018. A GPU-Accelerated Multivoxel Update Scheme for Iterative Coordinate Descent (ICD) Optimization in Statistical Iterative CT Reconstruction (SIR). IEEE Transactions on Computational Imaging 4, 3 (Sep. 2018), 355--365. Google ScholarGoogle ScholarCross RefCross Ref
  11. C. Jiang, Q. Zhang, R. Fan, and Z. Hu. 2018. Super-Resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation. Scientific Reports 8(1) (2018).Google ScholarGoogle Scholar
  12. P. Jin, C. A. Bouman, and K. D. Sauer. 2013. A Method for Simultaneous Image Reconstruction and Beam Hardening Correction. In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 1--5.Google ScholarGoogle Scholar
  13. E. A. Kazerooni. 2001. High-resolution CT of the lungs. American Journal of Roentgenology 177, 3 (Sep 2001), 501--519.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Korn, M. Fenchel, B. Bender, S. Danz, T. K. Hauser, D. Ketelsen, T. Flohr, C. D. Claussen, M. Heuschmid, U. Ernemann, and H. Brodoefel. 2012. Iterative Reconstruction in Head CT: Image Quality of Routine and Low-Dose Protocols in Comparison with Standard Filtered Back-Projection. American Journal of Neuroradiology 33, 2 (Feb 2012), 218--224.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Li, T. Zhang, Y. Chen, and A. J. Smola. 2014. Efficient Mini-batch Training for Stochastic Optimization. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14). ACM, New York, NY, USA, 661--670. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Li, Y. Liang, W. Zhang, T. Liu, H. Li, G. Luo, and M. Jiang. 2018. cuMBIR: An Efficient Framework for Low-dose X-ray CT Image Reconstruction on GPUs. In Proceedings of the 2018 International Conference on Supercomputing (ICS '18). ACM, New York, NY, USA, 184--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Milanfar. 2010. Super-Resolution Imaging. CRC Press.Google ScholarGoogle Scholar
  18. K. A. Mohan, S. V. Venkatakrishnan, J. W. Gibbs, E. B. Gulsoy, X. Xiao, M. D. Graef, P. W. Voorhees, and C. A. Bouman. 2015. TIMBER: A Method for Time-Space Reconstruction from Interlaced Views. IEEE Transactions on Computational Imaging 1, 2 (June 2015), 96--111.Google ScholarGoogle Scholar
  19. Z. Nadir, M. S. Brown, M. L. Comer, and C. A. Bouman. 2017. A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomography. IEEE Transactions on Computational Imaging 3, 4 (Dec 2017), 876--890.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Sabne, X. Wang, S. J. Kisner, C. A. Bouman, A. Raghunathan, and S. P. Midkiff. 2017. Model-Based Iterative CT Image Reconstruction on GPUs. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17). ACM, New York, NY, USA, 207--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Sreehari, S. V. Venkatakrishnan, K. L. Bouman, J. P. Simmons, L. F. Drummy, and C. A. Bouman. 2016. Multi-Resolution Data Fusion for Super-Resolution Electron Microscopy. CoRR abs/1612.00874 (2016). arXiv:1612.00874 http://arxiv.org/abs/1612.00874Google ScholarGoogle Scholar
  22. V. Sridhar, G. T. Buzzard, and C. A. Bouman. 2018. Distributed Framework for Fast Iterative CT Reconstruction from View-subsets. In Computational Imaging XVI, Burlingame, California, USA, 28 Jan 2018 - 1 Feb 2018.Google ScholarGoogle Scholar
  23. J. B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh. 2007. A Three-Dimensional Statistical Approach to Improved Image Quality for Multi-Slice Helical CT. Medical Physics 34(11) (2007).Google ScholarGoogle Scholar
  24. S. V. Venkatakrishnan, L. F. Drummy, M. Jackson, M. D. Graef, J. Simmons, and C. A. Bouman. 2013. High Angle Annular Dark Field- Scanning Transmission Electron Microscope (HAADF-STEM) Tomography. IEEE Transactions on Image Processing 22(1) (2013).Google ScholarGoogle Scholar
  25. X. Wang, K. A. Mohan, S. J. Kisner, C. A. Bouman, and S. P. Midkiff. 2016. Fast Voxel Line Update for Time-Space Image Reconstruction. In The 41st IEEE International Conference on Acoustics, Speech and Signal Processing.Google ScholarGoogle Scholar
  26. X. Wang, A. Sabne, S. J. Kisner, A. Raghunathan, C. A. Bouman, and S. P. Midkiff. 2016. High Performance Model Based Image Reconstruction. SIGPLAN Notice 51, 8, Article 2 (Feb. 2016), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. X. Wang, A. Sabne, P. Sakdhnagool, S. J. Kisner, C. A. Bouman, and S. P. Midkiff. 2017. Massively Parallel 3D Image Reconstruction. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '17). ACM, New York, NY, USA, Article 3, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Yan, S. V. Venkatakrishnan, J. Liu, C. A. Bouman, and W. Jiang. 2019. MBIR: A Cryo-ET 3D Reconstruction Method that Effectively Minimizes Missing Wedge Artifacts and Restores Missing Information. Journal of Structural Biology (Mar 2019).Google ScholarGoogle Scholar
  29. Z. Yu, J-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh. 2011. Fast Model-Based X-Ray CT Reconstruction using Spatially Nonhomogeneous ICD Optimization. IEEE Transactions on Image Processing 20(1) (2011).Google ScholarGoogle Scholar
  30. R. Zhang and J. T. Kwok. 2014. Asynchronous Distributed ADMM for Consensus Optimization. In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32 (ICML'14). JMLR.org, II-1701--II-1709.Google ScholarGoogle Scholar
  31. J. Zheng, S. S. Saquib, K. Sauer, and C. A. Bouman. 2000. Parallelizable Bayesian Tomography Algorithms with Rapid, Guaranteed Convergence. IEEE Transactions on Image Processing 9(10) (2000).Google ScholarGoogle Scholar
  32. M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. 2010. Parallelized Stochastic Gradient Descent. In Advances in Neural Information Processing Systems 23. Curran Associates, Inc., 2595--2603. http://papers.nips.cc/paper/4006-parallelized-stochastic-gradient-descent.pdfGoogle ScholarGoogle Scholar

Index Terms

  1. Consensus equilibrium framework for super-resolution and extreme-scale CT reconstruction

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SC '19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
        November 2019
        1921 pages
        ISBN:9781450362290
        DOI:10.1145/3295500

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 November 2019

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,516of6,373submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader