skip to main content
survey

Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey

Authors Info & Claims
Published:18 March 2019Publication History
Skip Abstract Section

Abstract

Complexity and variety of modern multiobjective optimisation problems result in the emergence of numerous search techniques, from traditional mathematical programming to various randomised heuristics. A key issue raised consequently is how to evaluate and compare solution sets generated by these multiobjective search techniques. In this article, we provide a comprehensive review of solution set quality evaluation. Starting with an introduction of basic principles and concepts of set quality evaluation, this article summarises and categorises 100 state-of-the-art quality indicators, with the focus on what quality aspects these indicators reflect. This is accompanied in each category by detailed descriptions of several representative indicators and in-depth analyses of their strengths and weaknesses. Furthermore, issues regarding attributes that indicators possess and properties that indicators are desirable to have are discussed, in the hope of motivating researchers to look into these important issues when designing quality indicators and of encouraging practitioners to bear these issues in mind when selecting/using quality indicators. Finally, future trends and potential research directions in the area are suggested, together with some guidelines on these directions.

References

  1. S. F. Adra and P. J. Fleming. 2011. Diversity management in evolutionary many-objective optimization. IEEE Trans. Evolution. Comput. 15, 2 (2011), 183--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Alaya, C. Solnon, and K. Ghedira. 2007. Ant colony optimization for multi-objective optimization problems. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, Vol. 1. 450--457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Asafuddoula, T. Ray, and H. K. Singh. 2015. Characterizing pareto front approximations in many-objective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’15). ACM, 607--614. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Auger, J. Bader, and D. Brockhoff. 2010. Theoretically investigating optimal -distributions for the hypervolume indicator: First results for three objectives. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’10). 586--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. 2009. Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’09). 563--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. 2009. Theory of the hypervolume indicator: Optimal -Distributions and the choice of the reference point. In Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA’09). 87--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Bader and E. Zitzler. 2011. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolution. Comput. 19, 1 (2011), 45--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Bandyopadhyay, S. K. Pal, and B. Aruna. 2004. Multiobjective GAs, quantitative indices, and pattern classification. IEEE Trans. Syst. Man Cybernet. 34, 5 (2004), 2088--2099. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Basseur and E. K. Burke. 2007. Indicator-based multi-objective local search. In Proceedings of the IEEE Congress on Evolutionary Computation. 3100--3107.Google ScholarGoogle Scholar
  10. A. Berry and P. Vamplew. 2005. The combative accretion model--multiobjective optimisation without explicit Pareto ranking. In Evolutionary Multi-Criterion Optimization. Springer, 77--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Beume. 2009. S-metric calculation by considering dominated hypervolume as Klee’s measure problem. Evolution. Comput. 17, 4 (Nov. 2009), 477--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Beume, C. M. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahrenhold. 2009. On the complexity of computing the hypervolume indicator. IEEE Trans. Evolution. Comput. 13, 5 (2009), 1075--1082. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Beume, B. Naujoks, and Emmerich. 2007. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Operat. Res. 181, 3 (2007), 1653--1669.Google ScholarGoogle ScholarCross RefCross Ref
  14. P. AN Bosman and D. Thierens. 2003. The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evolution. Comput. 7, 2 (2003), 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. AN Bosman and D. Thierens. 2005. The naive MIDEA: A baseline multi-objective EA. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Springer, 428--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Bozkurt, J. W. Fowler, E. S. Gel, B. Kim, M. Köksalan, and J. Wallenius. 2010. Quantitative comparison of approximate solution sets for multicriteria optimization problems with weighted Tchebycheff preference function. Operat. Res. 58, 3 (2010), 650--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Bringmann. 2013. Bringing order to special cases of Klee’s measure problem. In Proceedings of the International Symposium on Mathematical Foundations of Computer Science. Springer, 207--218.Google ScholarGoogle ScholarCross RefCross Ref
  18. K. Bringmann, S. Cabello, and M. Emmerich. 2017. Maximum volume subset selection for anchored boxes. In Proceedings of the 33rd International Symposium on Computational Geometry (SoCG’17), Vol. 77. 22:1--22:15.Google ScholarGoogle Scholar
  19. K. Bringmann and T. Friedrich. 2010. Approximating the volume of unions and intersections of high-dimensional geometric objects. Comput. Geom.: Theory Appl. 43, 6-7 (2010), 601--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. K. Bringmann and T. Friedrich. 2010. An efficient algorithm for computing hypervolume contributions. Evolution. Comput. 18, 3 (2010), 383--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Bringmann and T. Friedrich. 2010. The maximum hypervolume set yields near-optimal approximation. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO’10). ACM press, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Bringmann and T. Friedrich. 2012. Approximating the least hypervolume contributor: NP-hard in general, but fast in practice. Theoret. Comput. Sci. 425 (2012), 104--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Bringmann and T. Friedrich. 2013. Approximation quality of the hypervolume indicator. Artific. Intell. 195 (2013), 265--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Bringmann, T. Friedrich, C. Igel, and Voß. 2013. Speeding up many-objective optimization by Monte Carlo approximations. Artific. Intell. 204 (2013), 22--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Bringmann, T. Friedrich, and P. Klitzke. 2014. Two-dimensional subset selection for hypervolume and epsilon-indicator. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14). ACM Press, 589--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Brockhoff, T. Wagner, and H. Trautmann. 2012. On the properties of the R2 indicator. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO’12). ACM, 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Brockhoff, T. Wagner, and H. Trautmann. 2015. R2 indicator-based multiobjective search. Evolution. Comput. 23, 3 (2015), 369--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Brunsch and H. Röglin. 2015. Improved smoothed analysis of multiobjective optimization. J. ACM 62, 1 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. T. Bui, S. Wesolkowski, A. Bender, H. A. Abbass, and M. Barlow. 2009. A dominance-based stability measure for multi-objective evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, 749--756. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. X. Cai, H. Sun, and Z. Fan. 2018. A diversity indicator based on reference vectors for many-objective optimization. Info. Sci. 430 (2018), 467--486.Google ScholarGoogle Scholar
  31. Y. Cao, B. J. Smucker, and T. J. Robinson. 2015. On using the hypervolume indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental design. J. Stat. Plan. Infer. 160 (2015), 60--74.Google ScholarGoogle ScholarCross RefCross Ref
  32. W. M. Carlyle, J. W. Fowler, E. S. Gel, and B. Kim. 2003. Quantitative comparison of approximate solution sets for bi-criteria optimization problems. Decis. Sci. 34, 1 (2003), 63--82.Google ScholarGoogle ScholarCross RefCross Ref
  33. T. M. Chan. 2013. Klee’s measure problem made easy. In Proceedings of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS’13). IEEE, 410--419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. C. A. C. Coello. 2000. An updated survey of GA-based multiobjective optimization techniques. ACM Comput. Surv. 32, 2 (2000), 109--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary Algorithms for Solving Multi-objective Problems. Vol. 5. Springer, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. A. C. Coello, G. T. Pulido, and M. S. Lechuga. 2004. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolution. Comput. 8, 3 (2004), 256--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. C. A. C. Coello and M. R. Sierra. 2004. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In Proceedings of the Mexican International Conference on Artificial Intelligence (MICAI’04). 688--697.Google ScholarGoogle Scholar
  38. Y. Collette and P. Siarry. 2005. Three new metrics to measure the convergence of metaheuristics toward the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Comput. Operat. Res. 32, 4 (2005), 773--792. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. Czyzak and A. Jaszkiewicz. 1998. Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Crit. Decis. Anal. 7, 1 (1998), 34--47.Google ScholarGoogle ScholarCross RefCross Ref
  40. D. Datta and J. R. Figueira. 2012. Some convergence-based M-ary cardinal metrics for comparing performances of multi-objective optimizers. Comput. Operat. Res. 39, 7 (2012), 1754--1762. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. P. De, J. B. Ghosh, and C. E. Wells. 1992. Heuristic estimation of the efficient frontier for a bi-criteria scheduling problem. Decis. Sci. 23, 3 (1992), 596--609.Google ScholarGoogle ScholarCross RefCross Ref
  42. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. 2000. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’00). Springer Berlin / Heidelberg, 849--858. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. K. Deb and S. Jain. 2002. Running Performance Metrics for Evolutionary Multi-objective Optimization. Technical Report 2002004. KanGAL, Indian Institute of Technology.Google ScholarGoogle Scholar
  44. K. Deb, M. Mohan, and S. Mishra. 2005. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolution. Comput. 13, 4 (Dec. 2005), 501--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolution. Comput. 6, 2 (2002), 182--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Diaz-Manriquez, G. Toscano-Pulido, C. A. C. Coello, and R. Landa-Becerra. 2013. A ranking method based on the R2 indicator for many-objective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’13). IEEE, 1523--1530.Google ScholarGoogle Scholar
  47. E. Dilettoso, S. A. Rizzo, and N. Salerno. 2017. A weakly Pareto compliant quality indicator. Math. Comput. Appl. 22, 1 (2017), 25.Google ScholarGoogle Scholar
  48. M. Ehrgott. 2006. Multicriteria Optimization. Springer Science 8 Business Media. Google ScholarGoogle ScholarCross RefCross Ref
  49. A. E. Eiben and J. Smith. 2015. From evolutionary computation to the evolution of things. Nature 521, 7553 (2015), 476--482.Google ScholarGoogle Scholar
  50. M. Emmerich, N. Beume, and B. Naujoks. 2005. An EMO algorithm using the hypervolume measure as selection criterion. In Evolutionary Multi-Criterion Optimization. Springer, 62--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Emmerich and A. Deutz. 2014. Time complexity and zeros of the hypervolume indicator gradient field. In EVOLVE—A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation III. Springer International Publishing, 169--193.Google ScholarGoogle Scholar
  52. M. Emmerich, A. Deutz, and N. Beume. 2007. Gradient-based/evolutionary relay hybrid for computing Pareto front approximations maximizing the S-metric. In Hybrid Metaheuristics, T. Bartz-Beielstein (Ed.). Springer, 140--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. Emmerich, A. Deutz, and I. Yevseyeva. 2015. A Bayesian approach to portfolio selection in multicriteria group decision making. Procedia Comput. Sci. 64 (2015), 993--1000.Google ScholarGoogle ScholarCross RefCross Ref
  54. M. Emmerich and C. M. Fonseca. 2011. Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results. In Proceedings of the Conference on Evolutionary Multi-Criterion Optimization (EMO’11). 121--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. H. Eskandari, C. D. Geiger, and G. B. Lamont. 2007. FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Springer, 141--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. Farhang-Mehr and S. Azarm. 2003. An information-theoretic metric for assessing multi-objective optimization solution set quality. Trans. ASME J. Mech. Design 125, 4 (2003), 655--663.Google ScholarGoogle ScholarCross RefCross Ref
  57. A. Farhang-Mehr and S. Azarm. 2003. Minimal sets of quality metrics. In Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization (EMO’03). 405--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. L. Faulkenberg and M. M. Wiecek. 2010. On the quality of discrete representations in multiple objective programming. Optim. Eng. 11, 3 (2010), 423--440.Google ScholarGoogle ScholarCross RefCross Ref
  59. J. E. Fieldsend, R. M. Everson, and S. Singh. 2003. Using unconstrained elite archives for multiobjective optimization. IEEE Trans. Evolution. Comput. 7, 3 (2003), 305--323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Fleischer. 2003. The measure of Pareto optima applications to multi-objective metaheuristics. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Springer, 519--533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. C. M. Fonseca and P. J. Fleming. 1995. An overview of evolutionary algorithms in multiobjective optimization. Evolution. Comput. 3, 1 (1995), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. C. M. Fonseca and P. J. Fleming. 1996. On the performance assessment and comparison of stochastic multiobjective optimizers. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’96). Vol. 1141. 584--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez. 2006. An improved dimension-sweep algorithm for the hypervolume indicator. In Proceedings of the IEEE Congress Evolutionary Computation (CEC’06). 1157--1163.Google ScholarGoogle Scholar
  64. J. W. Fowler, B. Kim, W. M. Carlyle, E. S. Gel, and S. Horng. 2005. Evaluating solution sets of a posteriori solution techniques for bi-criteria combinatorial optimization problems. J. Schedul. 8, 1 (2005), 75--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. T. Friedrich, C. Horoba, and F. Neumann. 2009. Multiplicative approximations and the hypervolume indicator. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO’09). 571--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. C. K. Goh and K. C. Tan. 2007. An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evolution. Comput. 11, 3 (2007), 354--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. C. K. Goh and K. C. Tan. 2009. Evolutionary multi-objective optimization in uncertain environments. Issues Algor., Studies Comput. Intell. 186 (2009), 5--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. D. E. Goldberg. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. A. P. Guerreiro and C. M. Fonseca. 2018. Computing and updating hypervolume contributions in up to four dimensions. IEEE Trans. Evolution. Comput. 22, 3 (2018), 449--463.Google ScholarGoogle ScholarCross RefCross Ref
  70. A. P. Guerreiro, C. M. Fonseca, and M. Emmerich. 2012. A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In Proceedings of the Canadian Conference on Computational Geometry (CCCG’12). 77--82.Google ScholarGoogle Scholar
  71. D. Hadka and P. Reed. 2012. Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evolution. Comput. 20, 3 (2012), 423--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. M. P. Hansen. 1997. Tabu search for multiobjective optimization: MOTS. In Proceedings of the 13th International Conference on Multiple Criteria Decision Making. 574--586.Google ScholarGoogle Scholar
  73. M. P. Hansen and A. Jaszkiewicz. 1998. Evaluating the Quality of Approximations to the Nondominated Set. IMM-REP-1998-7. Institute of Mathematical Modeling, Technical University of Denmark.Google ScholarGoogle Scholar
  74. D. P. Hardin and E. B. Saff. 2004. Discretizing manifolds via minimum energy points. Notices AMS 51, 10 (2004), 1186--1194.Google ScholarGoogle Scholar
  75. Z. He and G. G. Yen. 2016. Visualization and performance metric in many-objective optimization. IEEE Trans. Evolution. Comput. 20, 3 (2016), 386--402.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. Helbig and A. P. Engelbrecht. 2014. Benchmarks for dynamic multi-objective optimisation algorithms. ACM Comput. Surv. 46, 3, Article 37 (Jan. 2014), 39 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. S. Helbig and D. Pateva. 1994. On several concepts for ε-efficiency. Operat. Res. Spektrum 16, 3 (1994), 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. G. R. Hernández and C. C. A. Coello. 2013. MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’13). IEEE, 2488--2495.Google ScholarGoogle Scholar
  79. G. R. Hernández and C. C. A. Coello. 2015. Improved metaheuristic based on the R2 indicator for many-objective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference. 679--686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng. 2016. SIP: Optimal product selection from feature models using many-objective evolutionary optimization. ACM Trans. Softw. Eng. Methodol. 25, 2 (2016), 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. T. Hiroyasu, M. Miki, and S. Watanabe. 2000. The new model of parallel genetic algorithm in multi-objective optimization problems-divided range multi-objective genetic algorithm. In Proceedings of the Congress on Evolutionary Computation, Vol. 1. IEEE, 333--340.Google ScholarGoogle Scholar
  82. I. Hupkens and M. Emmerich. 2013. Logarithmic-time updates in SMS-EMOA and hypervolume-based archiving. In EVOLVE—A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Springer International Publishing, 155--169.Google ScholarGoogle Scholar
  83. A. Ibrahim, S. Rahnamayan, M. V. Martin, and K. Deb. 2018. 3D-RadVis antenna: Visualization and performance measure for many-objective optimization. Swarm Evolution. Comput. 39 (2018), 157--176.Google ScholarGoogle ScholarCross RefCross Ref
  84. C. Igel, N. Hansen, and S. Roth. 2007. Covariance matrix adaptation for multi-objective optimization. Evolution. Comput. 15, 1 (Mar. 2007), 1--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. K. Ikeda, H. Kita, and S. Kobayashi. 2001. Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal? In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’01), Vol. 2. 957--962.Google ScholarGoogle Scholar
  86. A. Inselberg and B. Dimsdale. 1991. Parallel coordinates. In Human-Machine Interactive Systems. Springer, 199--233.Google ScholarGoogle Scholar
  87. H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima. 2017. Reference point specification in hypervolume calculation for fair comparison and efficient search. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 585--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima. 2018. How to specify a reference point in hypervolume calculation for fair performance comparison. Evolution. Comput. 26, 3 (2018), 411--440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima. 2018. Reference point specification in inverted generational distance for triangular linear Pareto front. IEEE Trans. Evolution. Comput. (2018).Google ScholarGoogle Scholar
  90. H. Ishibuchi, H. Masuda, and Y. Nojima. 2015. A study on performance evaluation ability of a modified inverted generational distance indicator. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’15). 695--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. 2014. Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM’14). 170--177.Google ScholarGoogle Scholar
  92. H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. 2015. Modified distance calculation in generational distance and inverted generational distance. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization (EMO’15). 110--125.Google ScholarGoogle Scholar
  93. H. Ishibuchi and T. Murata. 1998. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst., Man, Cybernet.—Part C: Appl. Rev. 28, 3 (1998), 392--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. H. Ishibuchi and Y. Shibata. 2004. Mating scheme for controlling the diversity-convergence balance for multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’04). 1259--1271.Google ScholarGoogle Scholar
  95. H. Ishibuchi, N. Tsukamoto, and Y. Nojima. 2008. Evolutionary many-objective optimization: A short review. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’08). 2419--2426.Google ScholarGoogle Scholar
  96. H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima. 2010. Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO’10). ACM, 527--534. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. H. Ishibuchi, T. Yoshida, and T. Murata. 2003. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evolution. Comput. 7, 2 (2003), 204--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. A. L. Jaimes and C. C. A. Coello. 2009. Study of preference relations in many-objective optimization. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO’09). 611--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. A. Jaszkiewicz. 2018. Improved quick hypervolume algorithm. Comput. Operat. Res. 90 (2018), 72--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. Jiang, Y. S. Ong, J. Zhang, and L. Feng. 2014. Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybernet. 44, 12 (2014), 2391--2404.Google ScholarGoogle ScholarCross RefCross Ref
  101. S. Jiang, S. Yang, and M. Li. 2016. On the use of hypervolume for diversity measurement of Pareto front approximations. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI’16). 1--8.Google ScholarGoogle Scholar
  102. S. Jiang, J. Zhang, Y. S. Ong, A. N. Zhang, and P. S. Tan. 2015. A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybernet. 45, 10 (2015), 2202--2213.Google ScholarGoogle ScholarCross RefCross Ref
  103. D. F. Jones, S. K. Mirrazavi, and M. Tamiz. 2002. Multi-objective meta-heuristics: An overview of the current state-of-the-art. Eur. J. Operat. Res. 137, 1 (2002), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  104. H. Kaji and H. Kita. 2007. Individual evaluation scheduling for experiment-based evolutionary multi-objective optimization. In Evolutionary Multi-Criterion Optimization. Springer, 645--659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. E. Kasanen, R. Östermark, and M. Zeleny. 1991. Gestalt system of holistic graphics: New management support view of MCDM. Comput. Operat. Res. 18, 2 (1991), 233--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. B. Kim, E. S. Gel, J. W. Fowler, W. M. Carlyle, and J. Wallenius. 2006. Evaluation of nondominated solution sets for k-objective optimization problems: An exact method and approximations. Eur. J. Operat. Res. 173, 2 (2006), 565--582.Google ScholarGoogle ScholarCross RefCross Ref
  107. J. D. Knowles. 2002. Local-search and hybrid evolutionary algorithms for Pareto optimization. Ph.D. Dissertation. University of Reading UK.Google ScholarGoogle Scholar
  108. J. D. Knowles and D. W. Corne. 1999. The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation. In Proceedings of the Congress Evolutionary Computation (CEC’99), Vol. 1.Google ScholarGoogle Scholar
  109. J. D. Knowles and D. W. Corne. 2002. On metrics for comparing nondominated sets. In Proceedings of the Congress Evolutionary Computation (CEC’02), Vol. 1. 711--716.Google ScholarGoogle Scholar
  110. J. D. Knowles and D. W. Corne. 2003. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evolution. Comput. 7, 2 (2003), 100--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. J. D. Knowles, D. W. Corne, and M. Fleischer. 2003. Bounded archiving using the Lebesgue measure. In Proceedings of the Congress on Evolutionary Computation (CEC’03). 2490--2497.Google ScholarGoogle Scholar
  112. J. D. Knowles, L. Thiele, and E. Zitzler. 2006. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report No. 214. Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland.Google ScholarGoogle Scholar
  113. J. Kollat and P. Reed. 2005. The value of online adaptive search: A performance comparison of NSGAII, ε-NSGAII and εMOEA. In Evolutionary Multi-Criterion Optimization. Springer, 386--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. T. Kuhn, C. M. Fonseca, L. Paquete, S. Ruzika, M. M. Duarte, and J. R. Figueira. 2016. Hypervolume subset selection in two dimensions: Formulations and algorithms. Evolution. Comput. 24, 3 (2016), 411--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. R. Lacour, K. Klamroth, and C. M. Fonseca. 2017. A box decomposition algorithm to compute the hypervolume indicator. Comput. Operat. Res. 79 (2017), 347--360.Google ScholarGoogle ScholarCross RefCross Ref
  116. M. Laumanns and R. Zenklusen. 2011. Stochastic convergence of random search methods to fixed size Pareto front approximations. Eur. J. Operat. Res. 213, 2 (2011), 414--421.Google ScholarGoogle ScholarCross RefCross Ref
  117. Y. W. Leung and Y. Wang. 2003. U-measure: A quality measure for multiobjective programming. IEEE Trans. Syst., Man, Cybernet.—Part A: Syst. Hum. 33, 3 (2003), 337--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. B. Li, J. Li, K. Tang, and X. Yao. 2015. Many-objective evolutionary algorithms: A survey. Comput. Surveys 48, 1 (2015), 1--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. B. Li, K. Tang, J. Li, and X. Yao. 2016. Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evolution. Comput. 20, 6 (2016), 924--938.Google ScholarGoogle ScholarCross RefCross Ref
  120. K. Li and K. Deb. 2016. Performance assessment for preference-based evolutionary multi-objective optimization using reference points. COIN Report 1, 1 (2016), 1--23.Google ScholarGoogle Scholar
  121. M. Li, T. Chen, and X. Yao. 2018. A critical review of “A practical guide to select quality indicators for assessing Pareto-based search algorithms in search-based software engineering”: Essay on quality indicator selection for SBSE. In Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results Track. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. M. Li, C. Grosan, S. Yang, X. Liu, and X. Yao. 2018. Multi-line distance minimization: A visualized many-objective test problem suite. IEEE Trans. Evolution. Comput. 22, 1 (2018), 61--78.Google ScholarGoogle ScholarCross RefCross Ref
  123. M. Li, L. Hu, and X. Yao. 2019. On comparing two sets of multi-objective solution vectors. arXiv preprint arXiv:1702.00477 (2019).Google ScholarGoogle Scholar
  124. M. Li, S. Yang, and X. Liu. 2014. Diversity comparison of Pareto front approximations in many-objective optimization. IEEE Trans. Cybernet. 44, 12 (2014), 2568--2584.Google ScholarGoogle ScholarCross RefCross Ref
  125. M. Li, S. Yang, and X. Liu. 2014. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans. Evolution. Comput. 18, 3 (2014), 348--365.Google ScholarGoogle ScholarCross RefCross Ref
  126. M. Li, S. Yang, and X. Liu. 2015. A performance comparison indicator for Pareto front approximations in many-objective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’15). 703--710. Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. M. Li, S. Yang, and X. Liu. 2015. Bi-goal evolution for many-objective optimization problems. Artific. Intell. 228 (2015), 45--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. M. Li, S. Yang, J. Zheng, and X. Liu. 2014. ETEA: A euclidean minimum spanning tree-based evolutionary algorithm for multiobjective optimization. Evol. Comput. 22, 2 (2014), 189--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. M. Li and X. Yao. 2019. An empirical investigation of the optimality and monotonicity properties of multiobjective archiving methods. In Proceedings of the Evolutionary Multi-Criterion Optimization (EMO’19), in press.Google ScholarGoogle Scholar
  130. M. Li, L. Zhen, and X. Yao. 2017. How to read many-objective solution sets in parallel coordinates. IEEE Comput. Intell. Mag. 12, 4 (2017), 88--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. M. Li and J. Zheng. 2009. Spread assessment for evolutionary multi-objective optimization. In Proceedings of the Evolutionary Multi-Criterion Optimization (EMO’09). Nantes, France, 216--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. M. Li, J. Zheng, and G. Xiao. 2008. Uniformity assessment for evolutionary multi-objective optimization. In Proceedings of the IEEE Congress Evolutionary Computation (CEC’08). 625--632.Google ScholarGoogle Scholar
  133. Xu-yong Li, Jin-hua Zheng, and Juan Xue. 2005. A diversity metric for multi-objective evolutionary algorithms. In Proceedings of the International Conference on Natural Computation. 68--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. A. Liefooghe and B. Derbel. 2016. A correlation analysis of set quality indicator values in multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’16). ACM, 581--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. G. Lizárraga-Lizárraga, A. Hernández-Aguirre, and S. Botello-Rionda. 2008. G-Metric: An M-ary quality indicator for the evaluation of non-dominated sets. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. G. Lizárraga-Lizárraga, A. Hernández-Aguirre, and S. Botello-Rionda. 2008. On the possibility to create a compatible--complete unary comparison method for evolutionary multiobjective algorithms. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. 759--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. G. Lizárraga-Lizárraga, A. Hernández-Aguirre, and S. Botello-Rionda. 2008. Some demonstrations about the cardinality of important sets of non-dominated sets. In Proceedings of the Mexican International Conference on Artificial Intelligence. 440--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. E. M. Lopez and C. A. C. Coello. 2016. IGD+-EMOA: A multi-objective evolutionary algorithm based on IGD+. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, 999--1006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev. 2013. Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Vol. 89. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  140. A. V. Lotov, G. K. Kamenev, and V. E. Berezkin. 2002. Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems. In Doklady Mathematics, Vol. 66. MAIK Nauka/Interperiodica, 260--262.Google ScholarGoogle Scholar
  141. L. Mandow and J. L. P. De La Cruz. 2010. Multiobjective A* search with consistent heuristics. J. ACM 57, 5 (2010), 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. H. Meng, X. Zhang, and S. Liu. 2005. New quality measures for multiobjective programming. Adv. Natur. Comput. (2005), 431--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. A. Messac and C. A. Mattson. 2004. Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J. 42, 10 (2004), 2101--2111.Google ScholarGoogle ScholarCross RefCross Ref
  144. H. Meunier, E. G. Talbi, and P. Reininger. 2000. A multiobjective genetic algorithm for radio network optimization. In Proceedings of the Congress on Evolutionary Computation (CEC’00), Vol. 1. 317--324.Google ScholarGoogle Scholar
  145. K. Miettinen. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.Google ScholarGoogle Scholar
  146. K. Miettinen. 2014. Survey of methods to visualize alternatives in multiple criteria decision making problems. OR Spectr. 36 (2014), 3--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. A. Mohammadi, M. N. Omidvar, and X. Li. 2013. A new performance metric for user-preference based multi-objective evolutionary algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE, 2825--2832.Google ScholarGoogle Scholar
  148. S. Mostaghim and J. Teich. 2005. A new approach on many objective diversity measurement. In Practical Approaches to Multi-Objective Optimization. Springer.Google ScholarGoogle Scholar
  149. A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. 2014. A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evolution. Comput. 18, 1 (2014), 4--19.Google ScholarGoogle ScholarCross RefCross Ref
  150. A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. 2014. Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans. Evolution. Comput. 18, 1 (Feb 2014), 20--35.Google ScholarGoogle ScholarCross RefCross Ref
  151. M. Nicolini. 2004. Evaluating performance of multi-objective genetic algorithms for water distribution system optimization. In Proceedings of the 6th International Conference on Hydroinformatic. World Scientific, 850--857.Google ScholarGoogle ScholarCross RefCross Ref
  152. T. Okabe, Y. Jin, and B. Sendhoff. 2003. A critical survey of performance indices for multi-objective optimisation. In Proceedings of the Congress Evolutionary Computation (CEC’03), Vol. 2. 878--885.Google ScholarGoogle Scholar
  153. T. Pamulapati, R. Mallipeddi, and P. N. Suganthan. 2018. I<sup>+</sup><sub>SDE</sub>—An indicator for multi and many-objective optimization. IEEE Trans. Evolution. Comput., in press (2018).Google ScholarGoogle Scholar
  154. C. H. Papadimitriou and M. Yannakakis. 2000. On the approximability of trade-offs and optimal access of web sources. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00). 86--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. D. H. Phan and J. Suzuki. 2013. R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’13). IEEE, 1836--1845.Google ScholarGoogle Scholar
  156. D. H. Phan, J. Suzuki, and I. Hayashi. 2012. Leveraging indicator-based ensemble selection in evolutionary multiobjective optimization algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’12). 497--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. A. Ponsich, A. L. Jaimes, and C. A. C. Coello. 2013. A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evolution. Comput. 17, 3 (2013), 321--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. R. C. Purshouse and P. J. Fleming. 2007. On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evolution. Comput. 11, 6 (2007), 770--784. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. C. Qian, G. Li, C. Feng, and K. Tang. 2018. Distributed Pareto optimization for subset selection. In Proceedings of the International Joint Conference on Artificial Intelligence. 1492--1498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. C. Qian, J. Shi, Y. Yu, K. Tang, and Z. Zhou. 2016. Parallel Pareto optimization for subset selection. In Proceedings of the International Joint Conference on Artificial Intelligence. 1939--1945. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. C. Qian, Y. Yu, and Z. Zhou. 2015. Subset selection by Pareto optimization. In Advances in Neural Information Processing Systems. MIT Press, 1774--1782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. M. Ravber, M. Mernik, and M. Črepinšek. 2017. The impact of quality indicators on the rating of multi-objective evolutionary algorithms. Appl. Soft Comput. 55 (2017), 265--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. N. Riquelme, C. Von Lücken, and B. Baran. 2015. Performance metrics in multi-objective optimization. In Proceedings of the Latin American Computing Conference (CLEI’15). 1--11.Google ScholarGoogle Scholar
  164. G. Rote, K. Buchin, K. Bringmann, S. Cabello, and M. Emmerich. 2016. Selecting points that maximize the convex hull volume. In Proceedings of the 19th Japan Conference on Discrete and Computational Geometry, Graphs, and Games. 58--60.Google ScholarGoogle Scholar
  165. G. Rudolph, O. Schütze, C. Grimme, C. Domínguez-Medina, and H. Trautmann. 2016. Optimal averaged Hausdorff archives for bi-objective problems: Theoretical and numerical results. Comput. Optim. Appl. 64, 2 (2016), 589--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. G. Rudolph, O. Schütze, C. Grimme, and H. Trautmann. 2014. An aspiration set EMOA based on averaged Hausdorff distances. In Proceedings of the International Conference on Learning and Intelligent Optimization. 153--156.Google ScholarGoogle Scholar
  167. L. M. S. Russo and A. P. Francisco. 2014. Quick hypervolume. IEEE Trans. Evolution. Comput. 18, 4 (2014), 481--502.Google ScholarGoogle ScholarCross RefCross Ref
  168. S. Sayın. 2000. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Program. 87, 3 (2000), 543--560.Google ScholarGoogle ScholarCross RefCross Ref
  169. J. R. Schott. 1995. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  170. O. Schutze, X. Esquivel, A. Lara, and C. C. A. Coello. 2012. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evolution. Comput. 16, 4 (2012), 504--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. M. R. Sierra and C. A. C. Coello. 2005. Improving PSO-based multi-objective optimization using crowding, mutation and -dominance. In Evolutionary Multi-criterion Optimization, Vol. 3410. Springer, 505--519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. N. Srinivas and K. Deb. 1994. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolution. Comput. 2, 3 (1994), 221--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Y. Sun, G. G. Yen, and Y. Zhang. 2018. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evolution. Comput., published online.Google ScholarGoogle ScholarCross RefCross Ref
  174. K. C. Tan, T. H. Lee, and E. F. Khor. 2002. Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artific. Intell. Rev. 17 (2002), 251--290. Issue 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. L. Thiele. 2015. Indicator-based selection. In Springer Handbook of Computational Intelligence. Springer, 983--994.Google ScholarGoogle Scholar
  176. L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina. 2009. A preference-based evolutionary algorithm for multi-objective optimization. Evolution. Comput. 17, 3 (2009), 411--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin. 2017. An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evolution. Comput. published online (2017).Google ScholarGoogle Scholar
  178. Y. Tian, R. Cheng, X. Zhang, M. Li, and Y. Jin. 2019. Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems. IEEE Comput. Intell. Mag., submitted (2019).Google ScholarGoogle Scholar
  179. Y. Tian, X. Zhang, R. Cheng, and Y. Jin. 2016. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’16). 5222--5229.Google ScholarGoogle Scholar
  180. H. Trautmann, T. Wagner, and D. Brockhoff. 2013. R2-EMOA: Focused multiobjective search using R2-indicator-based selection. In Proceedings of the International Conference on Learning and Intelligent Optimization. 70--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. 2017. A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evolution. Comput. 21, 3 (2017), 440--462.Google ScholarGoogle ScholarDigital LibraryDigital Library
  182. P. A. Tukey and J. W. Tukey. 1981. Preparation; Prechosen Sequences of Views. Wiley, Chapter Interpreting multivariate data, 189--213.Google ScholarGoogle Scholar
  183. T. Tusar and B. Filipic. 2015. Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method. IEEE Trans. Evolution. Comput. 19, 2 (2015), 225--245.Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. E. L. Ulungu, J. Teghem, P. H. Fortemps, and D. Tuyttens. 1999. MOSA method: A tool for solving multiobjective combinatorial optimization problems. J. Multicrit. Decis. Anal. 8, 4 (1999), 221.Google ScholarGoogle ScholarCross RefCross Ref
  185. D. A. Van Veldhuizen. 1999. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. Dissertation. Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio. Google ScholarGoogle ScholarDigital LibraryDigital Library
  186. D. A. Van Veldhuizen and G. B. Lamont. 1998. Evolutionary computation and convergence to a Pareto front. In Proceedings of the Genetic Programming Conference—Late-breaking Papers. 221--228.Google ScholarGoogle Scholar
  187. D. Vaz, L. Paquete, C. M. Fonseca, K. Klamroth, and M. Stiglmayr. 2015. Representation of the non-dominated set in biobjective discrete optimization. Comput. Operat. Res. 63 (2015), 172--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. D. Vaz, L. Paquete, and A. Ponte. 2013. A note on the epsilon-indicator subset selection. Theoret. Comput. Sci. 499 (2013), 113--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. A. Viana and J. P. de Sousa. 2000. Using metaheuristics in multiobjective resource constrained project scheduling. Eur. J. Operat. Res. 120, 2 (2000), 359--374.Google ScholarGoogle ScholarCross RefCross Ref
  190. C. A. R. Villalobos and C. C. A. Coello. 2012. A new multi-objective evolutionary algorithm based on a performance assessment indicator. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation Conference (GECCO’12). ACM, 505--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. T. Wagner, H. Trautmann, and D. Brockhoff. 2013. Preference Articulation by Means of the R2 Indicator. Springer, 81--95.Google ScholarGoogle Scholar
  192. D. J. Walker, R. M. Everson, and J. E. Fieldsend. 2013. Visualising mutually non-dominating solution sets in many-objective optimisation. IEEE Trans. Evolution. Comput. 17, 2 (2013), 165--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and K. Deb. 2008. Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Manage. Sci. 54, 7 (2008), 1336--1349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. H. Wang, Y. Jin, and X. Yao. 2017. Diversity assessment in many-objective optimization. IEEE Trans. Cybernet. 47, 6 (2017), 1510--1522.Google ScholarGoogle ScholarCross RefCross Ref
  195. R. Wang, S. Chen, L. Ma, S. Cheng, and Y. Shi. 2018. Multi-indicator bacterial foraging algorithm with Kriging model for many-objective optimization. In Proceedings of the International Conference on Swarm Intelligence. 530--539.Google ScholarGoogle Scholar
  196. S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. 2016. A practical guide to select quality indicators for assessing Pareto-based search algorithms in search-based software engineering. In Proceedings of the 38th International Conference on Software Engineering (ICSE’16). 631--642. Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. S. Wessing and B. Naujoks. 2010. Sequential parameter optimization for multi-objective problems. In Proceedings of the IEEE Congress on Evolutionary Computation. 1--8.Google ScholarGoogle Scholar
  198. L. While, L. Bradstreet, and L. Barone. 2012. A fast way of calculating exact hypervolumes. IEEE Trans. Evolution. Comput. 16, 1 (2012), 86--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. L. While, P. Hingston, L. Barone, and S. Huband. 2006. A faster algorithm for calculating hypervolume. IEEE Trans. Evolution. Comput. 10, 1 (2006), 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. J. Wu and S. Azarm. 2001. Metrics for quality assessment of a multiobjective design optimization solution set. Trans. ASME J. Mech. Design 123 (2001), 18--25.Google ScholarGoogle ScholarCross RefCross Ref
  201. Y. Xiang, Y. Zhou, Z. Zheng, and M. Li. 2018. Configuring software product lines by combining many-objective optimization and SAT solvers. ACM Trans. Softw. Eng. Methodol. 26, 4 (2018), 14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  202. S. Yang, M. Li, X. Liu, and J. Zheng. 2013. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolution. Comput. 17, 5 (2013), 721--736. Google ScholarGoogle ScholarDigital LibraryDigital Library
  203. G. G. Yen and Z. He. 2014. Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans. Evolution. Comput. 18, 1 (2014), 131--144.Google ScholarGoogle ScholarCross RefCross Ref
  204. I. Yevseyeva, A. P. Guerreiro, M. Emmerich, and C. M. Fonseca. 2014. A portfolio optimization approach to selection in multiobjective evolutionary algorithms. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’14). 672--681.Google ScholarGoogle Scholar
  205. H. Yildiz and S. Suri. 2012. On Klee’s measure problem for grounded boxes. In Proceedings of the 28th Annual Symposium on Computational Geometry. ACM, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. G. Yu, J. Zheng, and X. Li. 2015. An improved performance metric for multiobjective evolutionary algorithms with user preferences. In Proceedings of the IEEE Congress on Evolutionary Computation. 908--915.Google ScholarGoogle Scholar
  207. M. Zeleny. 1973. Compromise programming. In Multi Criteria Decision Making, J. L. Cochrane and M. Zeleny (Eds.). University of South Carolina Press, 262--301.Google ScholarGoogle Scholar
  208. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. 2006. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In Proceedings of the IEEE Congress on Evolutionary Computation. 892--899.Google ScholarGoogle Scholar
  209. A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q. Zhang. 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evolution. Comput. 1, 1 (2011), 32--49.Google ScholarGoogle ScholarCross RefCross Ref
  210. E. Zitzler. 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Dissertation. Zurich, Switzerland: Swiss Federal Institute of Technology (ETH).Google ScholarGoogle Scholar
  211. E. Zitzler, D. Brockhoff, and L. Thiele. 2007. The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Springer, 862--876. Google ScholarGoogle ScholarDigital LibraryDigital Library
  212. E. Zitzler, K. Deb, and L. Thiele. 2000. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolution. Comput. 8, 2 (2000), 173--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  213. E. Zitzler, J. Knowles, and L. Thiele. 2008. Quality assessment of Pareto set approximations. In Multiobjective Optimization, J. Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slowinski (Eds.). Vol. 5252. Springer, Berlin, 373--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. E. Zitzler and S. Künzli. 2004. Indicator-based selection in multiobjective search. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’04). 832--842.Google ScholarGoogle Scholar
  215. E. Zitzler and L. Thiele. 1998. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’98). 292--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evolution. Comput. 3, 4 (1999), 257--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca. 2003. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evolution. Comput. 7, 2 (2003), 117--132. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 52, Issue 2
          March 2020
          770 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3320149
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 March 2019
          • Accepted: 1 December 2018
          • Revised: 1 November 2018
          • Received: 1 May 2018
          Published in csur Volume 52, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format