skip to main content
survey

Cooperative Heterogeneous Multi-Robot Systems: A Survey

Published:09 April 2019Publication History
Skip Abstract Section

Abstract

The emergence of the Internet of things and the widespread deployment of diverse computing systems have led to the formation of heterogeneous multi-agent systems (MAS) to complete a variety of tasks. Motivated to highlight the state of the art on existing MAS while identifying their limitations, remaining challenges, and possible future directions, we survey recent contributions to the field. We focus on robot agents and emphasize the challenges of MAS sub-fields including task decomposition, coalition formation, task allocation, perception, and multi-agent planning and control. While some components have seen more advancements than others, more research is required before effective autonomous MAS can be deployed in real smart city settings that are less restrictive than the assumed validation environments of MAS. Specifically, more autonomous end-to-end solutions need to be experimentally tested and developed while incorporating natural language ontology and dictionaries to automate complex task decomposition and leveraging big data advancements to improve perception algorithms for robotics.

References

  1. Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M. P. O’Hare. 2017. Agent based modelling and simulation tools: A review of the state-of-art software. Comput. Sci. Rev. 24 (May 2017), 13--33.Google ScholarGoogle ScholarCross RefCross Ref
  2. Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. 2014. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Aud. Speech Lang. Process. 22, 10 (2014), 1533--1545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Tamer Abukhalil, Madhav Patil, Sarosh Patel, and Tarek Sobh. 2016. Coordinating a heterogeneous robot swarm using robot utility-based task assignment (RUTA). In Proceedings of the IEEE 14th International Workshop on Advanced Motion Control. 57--62.Google ScholarGoogle ScholarCross RefCross Ref
  4. Julie A. Adams et al. 2011. Coalition formation for task allocation: Theory and algorithms. Auton. Agents Multi-Agent Syst. 22, 2 (2011), 225--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Manoj Agarwal, Nitin Agrawal, Shikhar Sharma, Lovekesh Vig, and Naveen Kumar. 2015. Parallel multi-objective multi-robot coalition formation. Expert Syst. Applicat. 42, 21 (2015), 7797--7811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Aamir Ahmad and Pedro Lima. 2013. Multi-robot cooperative spherical-object tracking in 3D space based on particle filters. Robot. Auton. Syst. 61, 10 (2013), 1084--1093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Aamir Ahmad, Gian Diego Tipaldi, Pedro Lima, and Wolfram Burgard. 2013. Cooperative robot localization and target tracking based on least squares minimization. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA’13). IEEE, 5696--5701.Google ScholarGoogle ScholarCross RefCross Ref
  8. Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 34, 10 (2015), 1537--1557.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Christopher Amato, Girish Chowdhary, Alborz Geramifard, N. Kemal Ure, and Mykel J. Kochenderfer. 2013. Decentralized control of partially observable Markov decision processes. In Proceedings of the IEEE 52nd Annual Conference on Decision and Control. 2398--2405.Google ScholarGoogle Scholar
  10. Christopher Amato, Frans A. Oliehoek, and Eric Shyu. 2013. Scalable bayesian reinforcement learning for multiagent POMDPs. In Proceedings of the 1st Multidisciplinary Conference on Reinforcement Learning and Decision Making.Google ScholarGoogle Scholar
  11. Ofra Amir, Barbara J. Grosz, Edith Law, and Roni Stern. 2013. Collaborative health care plan support. In Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems. International Foundation for Autonomous Agents 8 Multiagent Systems, 793--796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ofra Amir, Barbara J. Grosz, and Roni Stern. 2014. To share or not to share? The single agent in a team decision problem. In Proceedings of the 28th AAAI Conf. Artificial Intelligence (2014), 3092--3093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tamio Arai, Enrico Pagello, and Lynne E. Parker. 2002. Editorial: Advances in multi-robot systems. IEEE Trans. Robot. Autom. 18, 5 (2002), 655--661.Google ScholarGoogle ScholarCross RefCross Ref
  14. Nordmann Arne, Hochgeschwender Nico, Wigand Dennis, and Wrede Sebastian. 2016. A survey on domain-specific modeling and languages in robotics. J. Softw. Eng. Robot. 7, 1 (2016), 75--99.Google ScholarGoogle Scholar
  15. Omur Arslan, Dan P. Guralnik, and Daniel E. Koditschek. 2016. Coordinated robot navigation via hierarchical clustering. IEEE Trans. Robot. 32, 2 (2016), 352--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J. Pappas. 2015. Decentralized active information acquisition: Theory and application to multi-robot SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation. 4775--4782.Google ScholarGoogle Scholar
  17. José Baca, Prithvi Pagala, Claudio Rossi, and Manuel Ferre. 2015. Modular robot systems towards the execution of cooperative tasks in large facilities. Robot. Auton. Syst. 66 (2015), 159--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Tim Bailey and Hugh Durrant-Whyte. 2006. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13, 3 (2006), 108--117.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jan Carlo Barca and Y. Ahmet Sekercioglu. 2013. Swarm robotics reviewed. Robotica 31, 3 (2013), 345--359.Google ScholarGoogle ScholarCross RefCross Ref
  20. Samuel Barrett and Peter Stone. 2015. Cooperating with unknown teammates in complex domains: A robot soccer case study of ad hoc teamwork. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’15). 2010--2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Levent Bayındır. 2016. A review of swarm robotics tasks. Neurocomputing 172 (2016), 292--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Michael Beetz, Lorenz Mösenlechner, and Moritz Tenorth. 2010. CRAM: A cognitive robot abstract machine for everyday manipulation in human environments. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’10). IEEE, 1012--1017.Google ScholarGoogle ScholarCross RefCross Ref
  23. Patrick Benavidez, Mohan Kumar, Sos Agaian, and Mo Jamshidi. 2015. Design of a home multi-robot system for the elderly and disabled. In Proceedings of the 10th Annual Systems of Engineering Conference. IEEE, 392--397.Google ScholarGoogle ScholarCross RefCross Ref
  24. Gerardo Beni and Jing Wang. 1993. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards a New Bionics? Springer, 703--712.Google ScholarGoogle Scholar
  25. Ahmed Benzerrouk, Lounis Adouane, and Philippe Martinet. 2014. Stable navigation in formation for a multi-robot system based on a constrained virtual structure. Robot. Auton. Syst. 62, 12 (2014), 1806--1815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Daniel S. Bernstein, Christopher Amato, Eric A. Hansen, and Shlomo Zilberstein. 2009. Policy iteration for decentralized control of Markov decision processes. J. Artif. Intell. Res. 34, 1 (2009), 89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. H. Bond and L. Gasser. 1988. Readings in Distributed Artificial Intelligence. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sylvia C. Botelho and Rachid Alami. 1999. M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement. In Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2. 1234--1239.Google ScholarGoogle Scholar
  29. Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013. Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 7, 1 (2013), 1--41.Google ScholarGoogle ScholarCross RefCross Ref
  30. Luis Búrdalo, Andrés Terrasa, Vicente Julián, and Ana García-Fornes. 2018. The information flow problem in multi-agent systems. Eng. Appl. Artif. Intell. 70 (April 2018), 130--141.Google ScholarGoogle Scholar
  31. Zack Butler and Jacob Hays. 2015. Task allocation for reconfigurable teams. Robot. Auton. Syst. 68 (June 2015), 59--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Philippe Caloud, Wonyun Choi, Jean-Claude Latombe, Claude Le Pape, and Mark Yim. 1990. Indoor automation with many mobile robots. In Proceedings of the IEEE International Workshop on Intelligent Robots and Systems: Towards a New Frontier of Applications. 67--72.Google ScholarGoogle ScholarCross RefCross Ref
  33. Adam Campbell and Annie S. Wu. 2011. Multi-agent role allocation: Issues, approaches, and multiple perspectives. Auton. Agents Multi-agent Syst. 22, 2 (2011), 317--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Georgios Chalkiadakis and Craig Boutilier. 2012. Sequentially optimal repeated coalition formation under uncertainty. Auton. Agents Multi-Agent Syst. 24, 3 (2012), 441--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Praneel Chand and Dale A. Carnegie. 2013. Mapping and exploration in a hierarchical heterogeneous multi-robot system using limited capability robots. Robot. Auton. Syst. 61, 6 (2013), 565--579.Google ScholarGoogle ScholarCross RefCross Ref
  36. Jianping Chen, Yimin Yang, and Liang Wei. 2010. Research on the approach of task decomposition in soccer robot system. In Proceedings of the IEEE International Conference on Digital Manufacturing and Automation, Vol. 2. 284--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Chen Tun Chou, Jiun-Yi Li, Ming-Fang Chang, and Li Chen Fu. 2011. Multi-robot cooperation based human tracking system using laser range finder. In Proceedings of the International Conference on Robotics and Automation. IEEE, 532--537.Google ScholarGoogle Scholar
  38. B. B. Choudhury and B. B. Biswal. 2008. Task allocation methodologies for multi-robot systems. IEEE Sponsored Conf. Computational Intelligence, Control 8 Computer Vision in Robotics 8 Automation (2008), 99--106.Google ScholarGoogle Scholar
  39. CNBC. 2016. An Internet of Things That Will number Ten Billions. Retrieved from http://www.cnbc.com/2016/02/01/an-internet-of-things-that-will-number-ten-billions.html.Google ScholarGoogle Scholar
  40. Luis C. Cobo, Charles L. Isbell Jr, and Andrea L. Thomaz. 2012. Automatic task decomposition and state abstraction from demonstration. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Vol. 1. 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xuefeng Dai, Laihao Jiang, and Yan Zhao. 2016. Cooperative exploration based on supervisory control of multi-robot systems. Appl. Intell. 45, 1 (2016), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Gautham P. Das, Thomas Martin McGinnity, and Sonya A. Coleman. 2014. Simultaneous allocations of multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous robots. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. 1198--1204.Google ScholarGoogle Scholar
  43. Gautham P. Das, Thomas M. McGinnity, Sonya A. Coleman, and Laxmidhar Behera. 2015. A distributed task allocation algorithm for a multi-robot system in healthcare facilities. J. Intell. Robot. Syst. 80, 1 (2015), 33--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Prithviraj Dasgupta, José Baca, K. R. Guruprasad, Angélica Muñoz-Meléndez, and Janyl Jumadinova. 2015. The COMRADE system for multirobot autonomous landmine detection in postconflict regions. J. Robot. 2015 (2015), 17 pages.Google ScholarGoogle Scholar
  45. Prithviraj Dasgupta and Ke Cheng. 2015. Dynamic multi-robot team reconfiguration using weighted voting games. J. Exp. Theoret. Artif. Intell. 28, 4 (2015), 1--22.Google ScholarGoogle Scholar
  46. Prithviraj Dasgupta, Ke Cheng, and Bikramjit Banerjee. 2012. Adaptive multi-robot team reconfiguration using a policy-reuse reinforcement learning approach. In Advanced Agent Technology. Springer, 330--345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Paul Davidsson, Stefan Johansson, and Mikael Svahnberg. 2005. Characterization and evaluation of multi-agent system architectural styles. In Software Engineering for Multi-Agent Systems IV. Springer, 179--188.Google ScholarGoogle Scholar
  48. Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Sam Leroux, and Pieter Simoens. 2015. Dianne: Distributed artificial neural networks for the internet of things. In Proceedings of the 2nd Workshop on Middleware for Context-Aware Applications in the IoT. ACM, 19--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Gabriel de O Ramos, Juan C. Burguillo Rial, and Ana L. C. Bazzan. 2013. Self-adapting coalition formation among electric vehicles in smart grids. In Proceedings of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. 2017. Learning modular neural network policies for multi-task and multi-robot transfer. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA’17). IEEE, 2169--2176.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Nitin Kumar Dhiman, Dipti Deodhare, and Deepak Khemani. 2015. Where am I? creating spatial awareness in unmanned ground robots using SLAM: A survey. Sadhana 40, 5 (2015), 1385--1433.Google ScholarGoogle ScholarCross RefCross Ref
  52. Donato Di Paola, Annalisa Milella, Grazia Cicirelli, and Arcangelo Distante. 2010. An autonomous mobile robotic system for surveillance of indoor environments. Int. J. Adv. Robot. Syst. 7, 1 (2010), 8.Google ScholarGoogle ScholarCross RefCross Ref
  53. M. Bernardine Dias. 2004. Traderbots: A New Paradigm for Robust and Efficient Multirobot Coordination in Dynamic Environments. Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. 2006. Market-based multirobot coordination: A survey and analysis. Proc. IEEE 94, 7 (2006), 1257--1270.Google ScholarGoogle ScholarCross RefCross Ref
  55. Marco Dorigo, Dario Floreano, Luca M. Gambardella, Francesco Mondada, Stefano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla, Arne Brutschy, et al. 2013. Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20, 4 (2013), 60--71.Google ScholarGoogle ScholarCross RefCross Ref
  56. Rajesh Doriya, Siddharth Mishra, and Swati Gupta. 2015. A brief survey and analysis of multi-robot communication and coordination. In Proceedings of the 2015 International Conference on Computing, Communication 8 Automation (ICCCA’15). IEEE, 1014--1021.Google ScholarGoogle ScholarCross RefCross Ref
  57. Fernando Dos Santos and Ana L. C. Bazzan. 2011. Towards efficient multiagent task allocation in the robocup rescue: A biologically-inspired approach. Auton. Agents Multi-Agent Syst. 22, 3 (2011), 465--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Haibin Duan and Peixin Qiao. 2014. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybernet. 7, 1 (2014), 24--37.Google ScholarGoogle ScholarCross RefCross Ref
  59. Francois Dufour and Tomas Prieto-Rumeau. 2013. Finite linear programming approximations of constrained discounted Markov decision processes. SIAM J. Contr. Optim. 51, 2 (2013), 1298--1324.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Hugh Durrant-Whyte and Tim Bailey. 2006. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13, 2 (2006), 99--110.Google ScholarGoogle ScholarCross RefCross Ref
  61. Barış Eker and H. Levent Akın. 2013. Solving decentralized POMDP problems using genetic algorithms. Auton. Agents Multi-agent Syst. 27, 1 (2013), 161--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Murugappan Elango, Ganesan Kanagaraj, and S. G. Ponnambalam. 2013. Sandholm algorithm with K-means clustering approach for multi-robot task allocation. In Swarm, Evolutionary, and Memetic Computing. Springer, 14--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Pablo Escandell-Montero, José M. Martínez-Martínez, José D. Martín-Guerrero, Emilio Soria-Olivas, and Juan Gómez-Sanchis. 2014. Least-squares temporal difference learning based on an extreme learning machine. Neurocomputing 141 (Oct. 2014), 37--45.Google ScholarGoogle Scholar
  64. Alessandro Farinelli, Giorgio Grisetti, Luca Iocchi, S. Lo Cascio, and Daniele Nardi. 2003. Design and evaluation of multi agent systems for rescue operations. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vol. 4. 3138--3143.Google ScholarGoogle ScholarCross RefCross Ref
  65. Jacques Ferber. 1999. Multi-agent Systems: An Introduction to Distributed Artificial Intelligence. Vol. 1. Addison-Wesley, Reading, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Borja Fernandez-Gauna, Ismael Etxeberria-Agiriano, and Manuel Graña. 2015. Learning multirobot hose transportation and deployment by distributed round-robin q-learning. PLoS ONE 10, 7 (2015), e0127129.Google ScholarGoogle ScholarCross RefCross Ref
  67. Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning. In Advances in Neural Information Processing Systems. 2962--2970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha. 2015. Visual simultaneous localization and mapping: A survey. Artif. Intell. Rev. 43, 1 (2015), 55--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Cipriano Galindo, Juan-Antonio Fernández-Madrigal, Javier González, and Alessandro Saffiotti. 2008. Robot task planning using semantic maps. Robot. Auton. Syst. 56, 11 (2008), 955--966. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Andreas Geiger, Martin Lauer, and Raquel Urtasun. 2011. A generative model for 3d urban scene understanding from movable platforms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1945--1952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Brian P. Gerkey and Maja J. Matari. 2002. Sold!: Auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 18, 5 (2002), 758--768.Google ScholarGoogle ScholarCross RefCross Ref
  72. Brian P. Gerkey and Maja J. Matarić. 2004. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23, 9 (2004), 939--954.Google ScholarGoogle ScholarCross RefCross Ref
  73. Piotr J. Gmytrasiewicz and Prashant Doshi. 2004. Interactive POMDPs: Properties and preliminary results. In Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, Vol. 3. IEEE, 1374--1375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Randy Gomez, Tatsuya Kawahara, Keisuke Nakamura, and Kazuhiro Nakadai. 2012. Multi-party human-robot interaction with distant-talking speech recognition. In Proceedings of the 7th Annual ACM/IEEE International Conference on Human--Robot Interaction. 439--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Bruno Duarte Gouveia, David Portugal, Daniel C. Silva, and Lino Marques. 2015. Computation sharing in distributed robotic systems: A case study on SLAM. IEEE Trans. Autom. Sci. Eng. 12, 2 (2015), 410--422.Google ScholarGoogle ScholarCross RefCross Ref
  76. Jason Gregory, Jonathan Fink, Ethan Stump, Jeffrey Twigg, John Rogers, David Baran, Nicholas Fung, and Stuart Young. 2016. Application of multi-robot systems to disaster-relief scenarios with limited communication. In Field and Service Robotics. Springer, 639--653.Google ScholarGoogle Scholar
  77. Luigi Alfredo Grieco, Alessandro Rizzo, Simona Colucci, Sabrina Sicari, Giuseppe Piro, Donato Di Paola, and Gennaro Boggia. 2014. IoT-aided robotics applications: Technological implications, target domains and open issues. Comput. Commun. 54 (2014), 32--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Tyler Gunn and John Anderson. 2013. Dynamic heterogeneous team formation for robotic urban search and rescue. Proc. Comput. Sci. 19 (2013), 22--31.Google ScholarGoogle ScholarCross RefCross Ref
  79. Ruiqi Guo. 2014. Scene Understanding with Complete Scenes and Structured Representations. Ph.D. Dissertation. University of Illinois at Urbana--Champaign.Google ScholarGoogle Scholar
  80. Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle Sebag, et al. 2016. A brief review of the chalearn automl challenge: Any-time any-dataset learning without human intervention. In Proceedings of the Workshop on Automatic Machine Learning. 21--30.Google ScholarGoogle Scholar
  81. Song Han, Huizi Mao, and William J. Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. Int. Conf. Learning Representations (ICLR'16). 1--14.Google ScholarGoogle Scholar
  82. Alexander Hans and Steffen Udluft. 2010. Ensembles of neural networks for robust reinforcement learning. In Proceedings of the 9th International Conference on Machine Learning and Applications. IEEE, 401--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. Amc: Automl for model compression and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision (ECCV’18). 784--800.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Stefan Heinrich and Stefan Wermter. 2011. Towards robust speech recognition for human-robot interaction. In Proceedings of the IROS Workshop on Cognitive Neuroscience Robotics. 29--34.Google ScholarGoogle Scholar
  85. E. G. Hernandez-Martinez, E. D. Ferreira-Vazquez, A. Lopez-Gonzalez, J. J. Flores-Godoy, G. Fernandez-Anaya, and P. Paniagua-Contro. 2016. Formation control of heterogeneous robots using distance and orientation. In Proceedings of the IEEE International Conference on Control Applications. 507--512.Google ScholarGoogle Scholar
  86. Daylond J. Hooper, Gilbert L. Peterson, and Brett J. Borghetti. 2009. Dynamic coalition formation under uncertainty. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 4799--4804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Andrew Howard, Lynne E. Parker, and Gaurav S. Sukhatme. 2006. Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. Int. J. Robot. Res. 25, 5--6 (2006), 431--447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Tao Hu, Stefano Messelodi, and Oswald Lanz. 2014. Dynamic task decomposition for probabilistic tracking in complex scenes. In Proceedings of the 22nd IEEE International Conference on Pattern Recognition. 4134--4139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Ting-Hao Kenneth Huang, Walter S. Lasecki, Amos Azaria, and Jeffrey P. Bigham. 2016. “Is there anything else I can help you with?”: Challenges in deploying an on-demand crowd-powered conversational agent. In Proceedings of the 4th AAAI Conference on Human Computation and Crowdsourcing.Google ScholarGoogle Scholar
  90. IBM. 2015. 1st Workshop on Cognitive Architectures. Retrieved from http://researcher.watson.ibm.com/researcher/view_group.php?id=5848.Google ScholarGoogle Scholar
  91. Gökhan Ince, Kazuhiro Nakadai, Tobias Rodemann, Hiroshi Tsujino, and Jun-Ichi Imura. 2011. Whole body motion noise cancellation of a robot for improved automatic speech recognition. Adv. Robot. 25, 11--12 (2011), 1405--1426.Google ScholarGoogle ScholarCross RefCross Ref
  92. Pablo Iñigo-Blasco, Fernando Diaz-del Rio, Ma Carmen Romero-Ternero, Daniel Cagigas-Muñiz, and Saturnino Vicente-Diaz. 2012. Robotics software frameworks for multi-agent robotic systems development. Robot. Auton. Syst. 60, 6 (2012), 803--821. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Muhammad Irfan and Adil Farooq. 2016. Auction-based task allocation scheme for dynamic coalition formations in limited robotic swarms with heterogeneous capabilities. In Proceedings of the IEEE International Conference on Intelligent Systems Engineering. 210--215.Google ScholarGoogle ScholarCross RefCross Ref
  94. Xiao Jia and Max Q.-H. Meng. 2013. A survey and analysis of task allocation algorithms in multi-robot systems. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. 2280--2285.Google ScholarGoogle Scholar
  95. Hui Jiang. 2010. Discriminative training of HMMs for automatic speech recognition: A survey. Comput. Speech Lang. 24, 4 (2010), 589--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu Palaniswami. 2014. An information framework for creating a smart city through internet of things. IEEE IoT J. 1, 2 (2014), 112--121.Google ScholarGoogle Scholar
  97. E. Gil Jones, Brett Browning, M. Bernardine Dias, Brenna Argall, Manuela Veloso, and Anthony Stentz. 2006. Dynamically formed heterogeneous robot teams performing tightly-coordinated tasks. In Proceedings of the IEEE International Conference on Robotics and Automation. 570--575.Google ScholarGoogle ScholarCross RefCross Ref
  98. K. Kakinuma, Makoto Ozaki, Masafumi Hashimoto, T. Yokoyama, and Kazuhiko Takahashi. 2011. Laser-based pedestrian tracking with multiple mobile robots using outdoor SLAM. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. 998--1003.Google ScholarGoogle ScholarCross RefCross Ref
  99. Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. 2015. A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12, 2 (2015), 398--409.Google ScholarGoogle ScholarCross RefCross Ref
  100. James Kennedy and Eberhart Russell C. 1995. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks. IEEE Press, 1942--1948.Google ScholarGoogle ScholarCross RefCross Ref
  101. Jutta Kiener and Oskar Von Stryk. 2010. Towards cooperation of heterogeneous, autonomous robots: A case study of humanoid and wheeled robots. Robot. Auton. Syst. 58, 7 (2010), 921--929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Hongkeun Kim, Hyungbo Shim, and Jin Heon Seo. 2011. Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Contr. 56, 1 (2011), 200--206.Google ScholarGoogle ScholarCross RefCross Ref
  103. In Su Kim, Hong Seok Choi, Kwang Moo Yi, Jin Young Choi, and Seong G. Kong. 2010. Intelligent visual surveillance survey. Int. J. Contr. Autom. Syst. 8, 5 (2010), 926--939.Google ScholarGoogle ScholarCross RefCross Ref
  104. Jonghoek Kim. 2016. Cooperative exploration and networking while preserving collision avoidance. IEEE Trans. Cybern. 47, 12 (2016), 4038--4048.Google ScholarGoogle ScholarCross RefCross Ref
  105. Min-Hyuk Kim, Hyeoncheol Baik, and Seokcheon Lee. 2015. Resource welfare based task allocation for UAV team with resource constraints. J. Intell. Robot. Syst. 77, 3--4 (2015), 611--627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Alexander Kleiner and Dali Sun. 2007. Decentralized SLAM for pedestrians without direct communication. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1461--1466.Google ScholarGoogle ScholarCross RefCross Ref
  107. Matthias Klusch and Andreas Gerber. 2002. Dynamic coalition formation among rational agents. IEEE Intell. Syst. 17, 3 (2002), 42--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Jens Kober and Jan Peters. 2012. Reinforcement learning in robotics: A survey. In Reinforcement Learning. Springer, 579--610.Google ScholarGoogle Scholar
  109. G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. 2013. A comprehensive taxonomy for multi-robot task allocation. Int. J. Robot. Res. 32, 12 (2013), 1495--1512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Iuliia Kotseruba, Oscar J. Avella Gonzalez, and John K. Tsotsos. 2016. A review of 40 years of cognitive architecture research: Focus on perception, attention, learning and applications. arXiv preprint arXiv:1610.08602, 1--74.Google ScholarGoogle Scholar
  111. Sarit Kraus. 2015. Intelligent agents for rehabilitation and care of disabled and chronic patients. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’15). 4032--4036. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Sarit Kraus, Onn Shehory, and Gilad Taase. 2003. Coalition formation with uncertain heterogeneous information. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems. ACM, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Pradeep Kumar Krishnappa and B. R. Prasad Babu. 2015. Investigating open issues in swarm intelligence for mitigating security threats in MANET. Int. J. Elect. Comput. Eng. 5, 5 (2015).Google ScholarGoogle Scholar
  114. Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A software accelerator for low-power deep learning inference on mobile devices. In Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Pat Langley, John E. Laird, and Seth Rogers. 2009. Cognitive architectures: Research issues and challenges. Cogn. Syst. Res. 10, 2 (2009), 141--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Charles Lesire, Guillaume Infantes, Thibault Gateau, and Magali Barbier. 2016. A distributed architecture for supervision of autonomous multi-robot missions. Auton. Robots 40, 7 (2016), 1343--1362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Keith Y. K. Leung, Timothy D. Barfoot, and Hugh H. T. Liu. 2010. Decentralized cooperative simultaneous localization and mapping for dynamic and sparse robot networks. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 3554--3561.Google ScholarGoogle Scholar
  118. Chi Li, Han Xiao, Keisuke Tateno, Federico Tombari, Nassir Navab, and Gregory D. Hager. 2016. Incremental scene understanding on dense SLAM. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’16). IEEE, 574--581.Google ScholarGoogle Scholar
  119. Jinyu Li, Li Deng, Yifan Gong, and Reinhold Haeb-Umbach. 2014. An overview of noise-robust automatic speech recognition. IEEE/ACM Trans. Aud. Speech Lang. Process. 22, 4 (2014), 745--777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Xiong Li, Sheng Dang, Kunju Li, and Qiansheng Liu. 2010. Multi-agent-based battlefield reconnaissance simulation by novel task decomposition and allocation. In Proceedings of the 5th IEEE International Conference on Computer Science and Education. 1410--1414.Google ScholarGoogle Scholar
  121. Zhiyong Li, Bo Xu, Lei Yang, Jun Chen, and Kenli Li. 2009. Quantum evolutionary algorithm for multi-robot coalition formation. In Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Stephen Shaoyi Liao, Jia-Dong Zhang, Raymond Lau, and Tianying Wu. 2014. Coalition formation based on marginal contributions and the markov process. Decis. Supp. Syst. 57 (Jan. 2014), 355--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. S. H. Liu, Yu Zhang, H. Y. Wu, and Jie Liu. 2010. Multi-robot task allocation based on swarm intelligence. J. Jilin Univ. 40, 1 (2010), 123--129.Google ScholarGoogle Scholar
  124. Zheng Liu, Marcelo H. Ang Jr, and Winston Khoon Guan Seah. 2005. Reinforcement learning of cooperative behaviors for multi-robot tracking of multiple moving targets. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 1289--1294.Google ScholarGoogle Scholar
  125. Z. Liu, W. Chen, J. Lu, H. Wang, and J. Wang. 2016. Formation control of mobile robots using distributed controller with sampled-data and communication delays. IEEE Trans. Contr. Syst. Technol. 24, 6 (2016), 2125--2132.Google ScholarGoogle ScholarCross RefCross Ref
  126. Zhong Liu, Xiao-guang Gao, and Xiao-wei Fu. 2016. Coalition formation for multiple heterogeneous UAVs cooperative search and prosecute with communication constraints. In Proceedings of the Chinese Control 8 Decision Conference. IEEE, 1727--1734.Google ScholarGoogle ScholarCross RefCross Ref
  127. D. F. Llorca, M. A. Sotelo, A. M. Hellín, A. Orellana, M. Gavilán, I. G. Daza, and A. G. Lorente. 2012. Stereo regions-of-interest selection for pedestrian protection: A survey. Transport. Res. C: Emerg. Technol. 25 (2012), 226--237.Google ScholarGoogle ScholarCross RefCross Ref
  128. Matt Luckcuck, Marie Farrell, Louise Dennis, Clare Dixon, and Michael Fisher. 2018. Formal specification and verification of autonomous robotic systems: A survey. Arxiv Preprint Arxiv:1807.00048 (2018).Google ScholarGoogle Scholar
  129. Ewa Luger and Abigail Sellen. 2016. Like having a really bad PA: The gulf between user expectation and experience of conversational agents. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 5286--5297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Jarmo Lunden, Sanjeev R. Kulkarni, Visa Koivunen, and H. Vincent Poor. 2013. Multiagent reinforcement learning based spectrum sensing policies for cognitive radio networks. IEEE J. Sel. Topics Signal Process. 7, 5 (2013), 858--868.Google ScholarGoogle ScholarCross RefCross Ref
  131. Damian M. Lyons, Michael Arbib, et al. 1989. A formal model of computation for sensory-based robotics. IEEE Trans. Robot. Autom. 5, 3 (1989), 280--293.Google ScholarGoogle ScholarCross RefCross Ref
  132. Joel G. Manathara, P. B. Sujit, and Randal W. Beard. 2011. Multiple UAV coalitions for a search and prosecute mission. J. Intell. Robot. Syst. 62, 1 (2011), 125--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Neil Mathew, Stephen L. Smith, and Steven L. Waslander. 2015. Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng. 12, 4 (2015), 1298--1308.Google ScholarGoogle ScholarCross RefCross Ref
  134. Tim Matthews, Sarvapali Ramchurn, and Georgios Chalkiadakis. 2012. Competing with humans at fantasy football: Team formation in large partially-observable domains. In Proceedings of the 26th AAAI Conf. Artificial Intelligence (2012), 1394--1400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Nikolaos Mavridis. 2015. A review of verbal and non-verbal human--robot interactive communication. Robot. Auton. Syst. 63 (2015), 22--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Kathryn Merrick. 2017. Value systems for developmental cognitive robotics: A survey. Cogn. Syst. Res. 41 (2017), 38--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. Piotr Mirowski, Tin Kam Ho, Saehoon Yi, and Michael MacDonald. 2013. SignalSLAM: Simultaneous localization and mapping with mixed wifi, bluetooth, LTE and magnetic signals. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. IEEE, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  138. Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. Int. Conf. Machine Learning (2016), 1928--1937. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Fabio Morbidi, Christopher Ray, and Gian Luca Mariottini. 2011. Cooperative active target tracking for heterogeneous robots with application to gait monitoring. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 3608--3613.Google ScholarGoogle ScholarCross RefCross Ref
  140. Davide Moroni, Maria Antonietta Pascali, Marco Reggiannini, and Ovidio Salvetti. 2013. Underwater scene understanding by optical and acoustic data integration. In Proceedings of the Meetings on Acoustics, Vol. 17. Acoustical Society of America.Google ScholarGoogle ScholarCross RefCross Ref
  141. Robin R. Murphy, Karen L. Dreger, Sean Newsome, Jesse Rodocker, Brian Slaughter, Richard Smith, Eric Steimle, Tetsuya Kimura, Kenichi Makabe, Kazuyuki Kon, et al. 2012. Marine heterogeneous multirobot systems at the great eastern japan tsunami recovery. J. Field Robot. 29, 5 (2012), 819--831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Richard M. Murray. 2007. Recent research in cooperative control of multivehicle systems. J. Dynam. Syst. Meas. Contr. 129, 5 (2007), 571--583.Google ScholarGoogle ScholarCross RefCross Ref
  143. Sarat Chandra Nagavarapu, Leena Vachhani, and Arpita Sinha. 2015. Multi-robot graph exploration and map building with collision avoidance: A decentralized approach. J. Intell. Robot. Syst. (2015), 1--21.Google ScholarGoogle Scholar
  144. Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the International Symposium on Mixed and Augmented Reality. IEEE, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  145. Martin Ngobye, Wouter T. De Groot, and Theo P. Van Der Weide. 2010. Types and priorities of multi-agent system interactions. Interdisc. Descr. Complex Syst. 8, 1 (2010), 49--58.Google ScholarGoogle Scholar
  146. Tejaswi Nimmagadda and Anima Anandkumar. 2015. Multi-object classification and unsupervised scene understanding using deep learning features and latent tree probabilistic models. Arxiv Preprint:1505.00308 (2015).Google ScholarGoogle Scholar
  147. Domen Novak and Robert Riener. 2015. A survey of sensor fusion methods in wearable robotics. Robot. Auton. Syst. 73 (2015), 155--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Gyeongtaek Oh, Youdan Kim, Jaemyung Ahn, and Han-Lim Choi. 2016. PSO-based optimal task allocation for cooperative timing missions. IFAC-PapersOnLine 49, 17 (2016), 314--319.Google ScholarGoogle ScholarCross RefCross Ref
  149. Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. 2013. Approximate solutions for factored Dec-POMDPs with many agents. In Proceedings of the International Conference on Autonomous Agents 8 Multi-agent Syst. 563--570. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Anibal Ollero, Simon Lacroix, Luis Merino, Jeremi Gancet, Johan Wiklund, Volker Remuß, Iker Veiga Perez, Luis G. Gutiérrez, Domingos Xavier Viegas, Miguel Angel González Benitez, et al. 2005. Multiple eyes in the skies: Architecture and perception issues in the COMETS unmanned air vehicles project. IEEE Robot. Autom. Mag. 12, 2 (2005), 46--57.Google ScholarGoogle ScholarCross RefCross Ref
  151. Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. 2017. Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In Proceedings of the International Conference on Machine Learning. 2681--2690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. Jun Ota. 2006. Multi-agent robot systems as distributed autonomous systems. Adv. Eng. Inf. 20, 1 (2006), 59--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  153. M. Padmanabhan and G. R. Suresh. 2015. Coalition formation and task allocation of multiple autonomous robots. In Proceedings of the IEEE 3rd International Conference on Signal Processing, Communication and Networking. 1--5.Google ScholarGoogle Scholar
  154. Narendra Singh Pal and Sanjeev Sharma. 2013. Robot path planning using swarm intelligence: A survey. Int. J. Comput. Applicat. 83, 12 (2013).Google ScholarGoogle Scholar
  155. Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of the art. Auton. Agents Multi-Agent Syst. 11, 3 (2005), 387--434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. Lynne E. Parker. 2008. Distributed intelligence: Overview of the field and its application in multi-robot systems. J. Phys. Agents 2, 1 (2008), 5--14.Google ScholarGoogle Scholar
  157. Lynne E. Parker. 2008. Multiple mobile robot systems. In Springer Handbook of Robotics. Springer, 921--941.Google ScholarGoogle Scholar
  158. Lynne E. Parker and Fang Tang. 2006. Building multirobot coalitions through automated task solution synthesis. Proc. IEEE 94, 7 (2006), 1289--1305.Google ScholarGoogle ScholarCross RefCross Ref
  159. Liam Paull, Guoquan Huang, Mae Seto, and John J. Leonard. 2015. Communication-constrained multi-AUV cooperative SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation. 509--516.Google ScholarGoogle Scholar
  160. Markus Peters, Wolfgang Ketter, Maytal Saar-Tsechansky, and John Collins. 2013. A reinforcement learning approach to autonomous decision-making in smart electricity markets. Mach. Learn. 92, 1 (2013), 5--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. Charles Pippin, Henrik Christensen, and Lora Weiss. 2013. Performance based task assignment in multi-robot patrolling. In Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 70--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Charles Pippin, Gary Gray, Michael Matthews, Dave Price, Ai-Ping Hu, Warren Lee, Michael Novitzky, and Paul Varnell. 2010. The Design of an Air-ground Research Platform for Cooperative Surveillance. Technical Report. Tech. Rep. 112010, Georgia Tech Research Institute.Google ScholarGoogle Scholar
  163. Sameera Ponda, Josh Redding, Han-Lim Choi, Jonathan P. How, Matt Vavrina, and John Vian. 2010. Decentralized planning for complex missions with dynamic communication constraints. In Proceedings of the IEEE American Control Conference. 3998--4003.Google ScholarGoogle ScholarCross RefCross Ref
  164. David Portugal and Rui Rocha. 2011. A survey on multi-robot patrolling algorithms. In Proceedings of the Doctoral Conference on Computing, Elect. 8 Ind. Syst. Springer, 139--146.Google ScholarGoogle ScholarCross RefCross Ref
  165. David Portugal and Rui P. Rocha. 2016. Cooperative multi-robot patrol with Bayesian learning. Auton. Robots 40, 5 (2016), 929--953. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. K. J. Prabuchandran, A. N. Hemanth Kumar, and Shalabh Bhatnagar. 2014. Multi-agent reinforcement learning for traffic signal control. In Proceedings of the 17th International Conference on Intelligent Transportation Systems. IEEE, 2529--2534.Google ScholarGoogle ScholarCross RefCross Ref
  167. Marc Pujol-Gonzalez, Jesus Cerquides, Alessandro Farinelli, Pedro Meseguer, and Juan Antonio Rodriguez-Aguilar. 2015. Efficient inter-team task allocation in robocup rescue. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents 8 Multiagent Syst., 413--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Martin L. Puterman. 2014. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley 8 Sons, New York, NY.Google ScholarGoogle Scholar
  169. Binsen Qian and Harry H. Cheng. 2014. A bio-inspired mobile agent-based coalition formation system for multiple modular-robot systems. In Proceedings of the IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications. 1--6.Google ScholarGoogle Scholar
  170. Binsen Qian and Harry H. Cheng. 2016. A mobile agent-based coalition formation system for multi-robot systems. In Proceedings of the 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. 1--6.Google ScholarGoogle Scholar
  171. Richard J. Radke. 2010. A survey of distributed computer vision algorithms. In Handbook of Ambient Intelligence and Smart Environments. Springer, 35--55.Google ScholarGoogle Scholar
  172. Reihane Rahimi, Farzaneh Abdollahi, and Karo Naqshi. 2014. Time-varying formation control of a collaborative heterogeneous multi agent system. Robot. Auton. Syst. 62, 12 (2014), 1799--1805. Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Sarvapali D. Ramchurn, Maria Polukarov, Alessandro Farinelli, Cuong Truong, and Nicholas R. Jennings. 2010. Coalition formation with spatial and temporal constraints. In Proceedings of the 9th International Conference on Autonomous Agents 8 Multiagent Syst., Vol. 3. 1181--1188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. Partha Pratim Ray. 2016. Internet of robotic things: Concept, technologies, and challenges. IEEE Access 4 (Dec 2016), 9489--9500.Google ScholarGoogle Scholar
  175. Luis Riazuelo, Moritz Tenorth, Daniel Di Marco, Marta Salas, Dorian Gálvez-López, Mösenlechner, et al. 2015. Roboearth semantic mapping: A cloud enabled knowledge-based approach. IEEE Trans. Autom. Sci. Eng. 12, 2 (2015), 432--443.Google ScholarGoogle ScholarCross RefCross Ref
  176. Yara Rizk and Mariette Awad. 2019. On extreme learning machines in sequential and time series prediction: A non-iterative and approximate training algorithm for recurrent neural networks. Neurocomputing 325 (Jan. 2019), 1--19.Google ScholarGoogle Scholar
  177. Yara Rizk, Mariette Awad, and Edward Tunstel. 2018. Decision making in multi agent systems: A survey. Trans. Cogn. Dev. Syst. 10, 3 (2018), 514--529.Google ScholarGoogle ScholarCross RefCross Ref
  178. Cyril Robin and Simon Lacroix. 2016. Multi-robot target detection and tracking: Taxonomy and survey. Auton. Robots 40, 4 (2016), 729--760. Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Florian Rohrmüller, Dirk Wollherr, and Martin Buss. 2012. Muroco: A framework for capability-and situation-aware coalition formation in cooperative multi-robot systems. J. Intell. Robot. Syst. 67, 3--4 (2012), 339--370.Google ScholarGoogle ScholarCross RefCross Ref
  180. Juan Jesús Roldán, Pablo Garcia-Aunon, Mario Garzón, Jorge de León, Jaime del Cerro, and Antonio Barrientos. 2016. Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors 16, 7 (2016), 1018.Google ScholarGoogle ScholarCross RefCross Ref
  181. Lorenzo Rosa, Marco Cognetti, Andrea Nicastro, Pol Alvarez, and Giuseppe Oriolo. 2015. Multi-task cooperative control in a heterogeneous ground-air robot team. IFAC J. Syst. Contr. 48, 5 (2015), 53--58.Google ScholarGoogle Scholar
  182. Asim Roy. 2008. Connectionism, controllers, and a brain theory. IEEE Trans. Syst. Man Cybern. A., Syst. Hum. 38, 6 (2008), 1434--1441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Asim Roy. 2010. On NSF “open questions,” some external properties of the brain as a learning system and an architecture for autonomous learning. In Proceedings of the International Joint Conference on Neural Networks. IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  184. Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach. Pearson. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Lorenzo Sabattini, Cristian Secchi, and Cesare Fantuzzi. 2016. Coordinated dynamic behaviors for multirobot systems with collision avoidance. IEEE Trans. Cybern. 47, 12 (2016), 4062--4073.Google ScholarGoogle ScholarCross RefCross Ref
  186. Adam Sadilek, John Krumm, and Eric Horvitz. 2013. Crowdphysics: Planned and opportunistic crowdsourcing for physical tasks. J. Sea Res. 21, 10,424 (2013), 125--620.Google ScholarGoogle Scholar
  187. Joao Machado Santos, Micael S. Couceiro, David Portugal, and Rui P. Rocha. 2014. Fusing sonars and LRF data to perform SLAM in reduced visibility scenarios. In Proceedings of the IEEE International Conference on Autonomous Robot Systems and Competitions. 116--121.Google ScholarGoogle Scholar
  188. João Machado Santos, Micael S. Couceiro, David Portugal, and Rui P. Rocha. 2015. A sensor fusion layer to cope with reduced visibility in SLAM. J. Intell. Robot. Syst. 80, 3--4 (2015), 401--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Sanem Sariel-Talay, Tucker R. Balch, and Nadia Erdogan. 2011. A generic framework for distributed multirobot cooperation. J. Intell. Robot. Syst. 63, 2 (2011), 323--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Jun Sawada, Filipp Akopyan, Andrew S. Cassidy, Brian Taba, Michael V. Debole, Pallab Datta, Rodrigo Alvarez-Icaza, Arnon Amir, John V. Arthur, Alexander Andreopoulos, et al. 2016. Truenorth ecosystem for brain-inspired computing: Scalable systems, software, and applications. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. Sayan D. Sen and Julie A. Adams. 2015. An influence diagram based multi-criteria decision making framework for multirobot coalition formation. Auton. Agents Multi-Agent Syst. 29, 6 (2015), 1061--1090. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Travis C. Service, Sayan D. Sen, and Julie A. Adams. 2014. A simultaneous descending auction for task allocation. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 379--384.Google ScholarGoogle Scholar
  194. Lloyd S. Shapley. 1953. Stochastic games. Proc. Natl. Acad. Sci. U.S.A. 39, 10 (1953), 1095.Google ScholarGoogle ScholarCross RefCross Ref
  195. Pedro M. Shiroma and Mario F. M. Campos. 2009. CoMutaR: A framework for multi-robot coordination and task allocation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 4817--4824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  196. Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent Systems: Algorithmic, Game-theoretic, and Logical Foundations. Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  197. David Silver and Joel Veness. 2010. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing Systems. 2164--2172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. Reid Simmons, Sanjiv Singh, David Hershberger, Josue Ramos, and Trey Smith. 2001. First results in the coordination of heterogeneous robots for large-scale assembly. In Experimental Robotics VII. Springer, 323--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  199. Pieter Simoens, Christof Mahieu, Femke Ongenae, Femke De Backere, Stijn De Pestel, Jelle Nelis, Filip De Turck, Shirley A. Elprama, Katriina Kilpi, Charlotte Jewell, et al. 2016. Internet of robotic things: Context-aware and personalized interventions of assistive social robots (short paper). In Proceedings of the 2016 5th IEEE International Conference on Cloud Networking (Cloudnet’16). IEEE, 204--207.Google ScholarGoogle ScholarCross RefCross Ref
  200. Rubén Solera-Urena, Ana Isabel Garcia-Moral, Carmen Peláez-Moreno, Manel Martinez-Ramon, and Fernando Diaz-de Maria. 2012. Real-time robust automatic speech recognition using compact support vector machines. IEEE Trans. Aud. Speech Lang. Process. 20, 4 (2012), 1347--1361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. Lei Song, Fan Jiang, Zhongke Shi, Rafael Molina, and Aggelos K. Katsaggelos. 2014. Toward dynamic scene understanding by hierarchical motion pattern mining. IEEE Trans. Intell. Transp. Syst. 15, 3 (2014), 1273--1285.Google ScholarGoogle ScholarCross RefCross Ref
  202. Zhao Song, Xuejun Liao, and Lawrence Carin. 2015. Solving DEC-POMDPs by expectation maximization of value functions. AAAI Spring Symposium Series (2015), 68--76.Google ScholarGoogle Scholar
  203. Matthijs T. J. Spaan, Frans A. Oliehoek, and Christopher Amato. 2011. Scaling Up optimal heuristic search in Dec-POMDPs via incremental expansion. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  204. Paolo Stegagno, Marco Cognetti, L. S. Rosa, Pietro Peliti, and Giuseppe Oriolo. 2013. Relative localization and identification in a heterogeneous multi-robot system. In Proceedings of the IEEE International Conference on Robotics and Automation. 1857--1864.Google ScholarGoogle ScholarCross RefCross Ref
  205. Peter Stone and Manuela Veloso. 2000. Multiagent systems: A survey from a machine learning perspective. Auton. Robots 8, 3 (2000), 345--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  206. Xueqing Sun, Tao Mao, and Laura E. Ray. 2009. Inference model for heterogeneous robot team configuration based on Reinforcement Learning. In Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications. 55--60.Google ScholarGoogle Scholar
  207. Toshihisa Tabuchi, Seiichi Ozawa, and Asim Roy. 2009. An autonomous learning algorithm of resource allocating network. In Proceedings of the International Conference on Intelligence Data Engineering and Automated Learning. Springer, 134--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  208. Ayesha M. Talha and Imran N. Junejo. 2014. Dynamic scene understanding using temporal association rules. Image Vis. Comput. 32, 12 (2014), 1102--1116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  209. Zheng-Hua Tan and Børge Lindberg. 2010. Low-complexity variable frame rate analysis for speech recognition and voice activity detection. IEEE J. Sel. Top. Sign. Process. 4, 5 (2010), 798--807.Google ScholarGoogle ScholarCross RefCross Ref
  210. Biwei Tang, Zhanxia Zhu, Hyo-Sang Shin, and Antonios Tsourdos. 2015. Task-priority based task allocation of multiple UAVs with resource constraint. In Proceedings of the 23th Mediterranean Conference on Control and Automation. IEEE, 8--13.Google ScholarGoogle ScholarCross RefCross Ref
  211. Su-Yan Tang, Yi-Fan Zhu, Qun Li, and Yong-Lin Lei. 2010. Survey of task allocation in multi agent systems. Syst. Eng. Electron. 32, 10 (2010), 2155--2161.Google ScholarGoogle Scholar
  212. Adam Taylor, Ivana Dusparic, Edgar Galván-López, Siobhán Clarke, and Vinny Cahill. 2013. Transfer learning in multi-agent systems through parallel transfer. In Proceedings of the 30th International Conference on Machine Learning. 1--9.Google ScholarGoogle Scholar
  213. Matthew E. Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 10 (Jul. 2009), 1633--1685. Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. Dušan Teodorović and Mauro Dell’Orco. 2005. Bee colony optimization--a cooperative learning approach to complex transportation problems. In Advanced OR and AI Methods in Transportation. 51--60.Google ScholarGoogle Scholar
  215. Alejandro Torreño, Eva Onaindia, Antonín Komenda, and Michal Štolba. 2018. Cooperative multi-agent planning: A survey. ACM Comput. Surv. 50, 6 (2018), 84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. J. Gregory Trafton, Laura M. Hiatt, Anthony M. Harrison, Franklin P. Tamborello II, Sangeet S. Khemlani, and Alan C. Schultz. 2013. Act-r/e: An embodied cognitive architecture for human-robot interaction. J. Hum.-Robot Interact. 2, 1 (2013), 30--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  217. Nicolas A. Tsokas and Kostas J. Kyriakopoulos. 2012. Multi-robot multiple hypothesis tracking for pedestrian tracking. Auton. Robots 32, 1 (2012), 63--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  218. Richard T. Vaughan, Gaurav S. Sukhatme, Francisco J. Mesa-Martinez, and James F. Montgomery. 2000. Fly spy: Lightweight localization and target tracking for cooperating air and ground robots. In Distributed Autonomous Robotic Systems 4. Springer, Berlin, 315--324.Google ScholarGoogle Scholar
  219. Sarvesh Vishwakarma and Anupam Agrawal. 2013. A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29, 10 (2013), 983--1009.Google ScholarGoogle ScholarCross RefCross Ref
  220. Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. 2017. DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 36, 3 (2017), 513--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  221. Chaohui Wang, Nikos Komodakis, and Nikos Paragios. 2013. Markov random field modeling, inference 8 learning in computer vision 8 image understanding: A survey. Comput. Vis. Image Understand. 117, 11 (2013), 1610--1627. Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. L. Wang, M. Liu, and M. Q. Meng. 2017. A hierarchical auction-based mechanism for real-time resource allocation in cloud robotic systems. IEEE Trans. Cybern. 47, 2 (2017), 473--484.Google ScholarGoogle Scholar
  223. Qining Wang, Ming Wu, Yan Huang, and Long Wang. 2008. Formation control of heterogeneous multi-robot systems. IFAC Proc. Vol. 41, 2 (2008), 6596--6601.Google ScholarGoogle ScholarCross RefCross Ref
  224. Wanyuan Wang, Jiuchuan Jiang, Bo An, Yichuan Jiang, and Bing Chen. 2017. Toward efficient team formation for crowdsourcing in noncooperative social networks. IEEE Trans. Cybern. 47, 12 (2017), 4208--4222.Google ScholarGoogle ScholarCross RefCross Ref
  225. Sarah E. Webster, Jeffrey M. Walls, Louis L. Whitcomb, and Ryan M. Eustice. 2013. Decentralized extended information filter for single-beacon cooperative acoustic navigation: Theory and experiments. IEEE Trans. Robot. 29, 4 (2013), 957--974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. Gerhard Weiss (Ed.). 2013. Multiagent Systems. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  227. Shimon Whiteson. 2012. Evolutionary computation for reinforcement learning. In Reinforcement Learning. Springer, Berlin, 325--355.Google ScholarGoogle Scholar
  228. Joey Wilson and Neal Patwari. 2011. See-through walls: Motion tracking using variance-based radio tomography networks. IEEE Trans. Mobile Comput. 10, 5 (2011), 612--621. Google ScholarGoogle ScholarDigital LibraryDigital Library
  229. Jinseok Woo, Kazuyoshi Wada, and Naoyuki Kubota. 2012. Robot partner system for elderly people care by using sensor network. In Proceedings of the 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. 1329--1334.Google ScholarGoogle ScholarCross RefCross Ref
  230. Bo Xu, Zhaofeng Yang, Yu Ge, and Zhiping Peng. 2015. Coalition formation in multi-agent systems based on improved particle swarm optimization algorithm. Int. J. Hybrid Inf. Technol. 8, 3 (2015).Google ScholarGoogle Scholar
  231. Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. 2013. A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  232. Zhang Yu, Liu Shuhua, Fu Shuai, and Wu Di. 2009. A quantum-inspired ant colony optimization for robot coalition formation. In Proceedings of the Chinese Control and Decision Conference. IEEE, 626--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  233. Yu Zhang and Lynne E. Parker. 2013. IQ-ASyMTRe: Forming executable coalitions for tightly coupled multirobot tasks. IEEE Trans. Robot. 29, 2 (2013), 400--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  234. Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai. 2017. FMRQ-A multiagent reinforcement learning algorithm for fully cooperative tasks. IEEE Trans. Cybern. 47, 6 (2017), 1367--1379.Google ScholarGoogle ScholarCross RefCross Ref
  235. Yuanshi Zheng and Long Wang. 2012. Distributed consensus of heterogeneous multi-agent systems with fixed and switching topologies. Int. J. Contr. 85, 12 (2012), 1967--1976.Google ScholarGoogle ScholarCross RefCross Ref
  236. Yuanshi Zheng and Long Wang. 2014. Containment control of heterogeneous multi-agent systems. Int. J. Contr. 87, 1 (2014), 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  237. Y. Zheng, Y. Zhu, and L. Wang. 2011. Consensus of heterogeneous multi-agent systems. IET Contr. Theory Applicat. 5, 16 (2011), 1881--1888.Google ScholarGoogle ScholarCross RefCross Ref
  238. Liu Zhong, Gao Xiao-Guang, and Fu Xiao-Wei. 2015. Coalition formation for multiple heterogeneous UAVs in unknown environment. In Proceedings of the IEEE 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control. 1222--1227.Google ScholarGoogle ScholarCross RefCross Ref
  239. Kai Zhou, Karthik Mahesh Varadarajan, Michael Zillich, and Markus Vincze. 2011. Web mining driven semantic scene understanding and object localization. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. 2824--2829.Google ScholarGoogle ScholarCross RefCross Ref
  240. L. Zhou, P. Yang, C. Chen, and Y. Gao. 2017. Multiagent reinforcement learning with sparse interactions by negotiation and knowledge transfer. IEEE Trans. Cybern. 47, 5 (2017), 1238--1250.Google ScholarGoogle ScholarCross RefCross Ref
  241. Robert Zlot and Anthony Stentz. 2003. Multirobot control using task abstraction in a market framework. In Proceedings of the Collaborative Technology Alliances Conference.Google ScholarGoogle Scholar
  242. Robert Zlot and Anthony Stentz. 2005. Complex task allocation for multiple robots. In Proceedings of the IEEE International Conference on Robotics and Automation. 1515--1522.Google ScholarGoogle ScholarCross RefCross Ref
  243. Robert Zlot and Anthony Stentz. 2006. Market-based multirobot coordination for complex tasks. Int. J. Robot. Research 25, 1 (2006), 73--101.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Cooperative Heterogeneous Multi-Robot Systems: A Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 52, Issue 2
          March 2020
          770 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3320149
          • Editor:
          • Sartaj Sahni
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 April 2019
          • Revised: 1 January 2019
          • Accepted: 1 January 2019
          • Received: 1 January 2018
          Published in csur Volume 52, Issue 2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • survey
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format