skip to main content
research-article

Symmetric moving frames

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

A basic challenge in field-guided hexahedral meshing is to find a spatially-varying frame that is adapted to the domain geometry and is continuous up to symmetries of the cube. We introduce a fundamentally new representation of such 3D cross fields based on Cartan's method of moving frames. Our key observation is that cross fields and ordinary frame fields are locally characterized by identical conditions on their Darboux derivative. Hence, by using derivatives as the principal representation (and only later recovering the field itself), one avoids the need to explicitly account for symmetry during optimization. At the discrete level, derivatives are encoded by skew-symmetric matrices associated with the edges of a tetrahedral mesh; these matrices encode arbitrarily large rotations along each edge, and can robustly capture singular behavior even on coarse meshes. We apply this representation to compute 3D cross fields that are as smooth as possible everywhere but on a prescribed network of singular curves---since these fields are adapted to curve tangents, they can be directly used as input for field-guided mesh generation algorithms. Optimization amounts to an easy nonlinear least squares problem that behaves like a convex program in the sense that it always appears to produce the same result, independent of initialization. We study the numerical behavior of this procedure, and perform some preliminary experiments with mesh generation.

Skip Supplemental Material Section

Supplemental Material

papers_426.mp4

mp4

288 MB

References

  1. R. Abraham, J. E. Marsden, and R. Ratiu. 1988. Manifolds, Tensor Analysis, and Applications: 2nd Edition. Springer-Verlag, Berlin, Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. Armstrong, H. Fogg, C. Tierney, and T. Robinson. 2015. Common Themes in Multiblock Structured Quad/Hex Mesh Generation. Proced. Eng. 124 (2015).Google ScholarGoogle Scholar
  3. D. Arnold, R. Falk, and R. Winther. 2006. Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006), 1--155.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (Aug. 2008), 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Bommes, H. Zimmer, and L. Kobbelt. 2012. Practical Mixed-Integer Optimization for Geometry Processing. In Curves and Surfaces. 193--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Brin, K. Johannson, and P. Scott. 1985. Totally peripheral 3-manifolds. Pacific J. Math. 118, 1 (1985), 37--51.Google ScholarGoogle ScholarCross RefCross Ref
  8. K. Crane, F. de Goes, M. Desbrun, and P. Schröder. 2013. Digital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013 courses (SIGGRAPH '13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Crane, M. Desbrun, and P. Schröder. 2010. Trivial Connections on Discrete Surfaces. Comp. Graph. Forum (SGP) 29, 5 (2010), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  10. F. de Goes, M. Desbrun, and Y. Tong. 2016. Vector Field Processing on Triangle Meshes. In ACM SIGGRAPH 2016 Courses (SIGGRAPH '16). 27:1--27:49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Desbrun, E. Kanso, and Y. Tong. 2006. Discrete Differential Forms for Computational Modeling. In ACM SIGGRAPH 2006 Courses (SIGGRAPH '06). 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. DeVito, M. Mara, M. Zollöfer, G. Bernstein, C. Theobalt, P. Hanrahan, M. Fisher, and M. Nießner. 2017. Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging. ACM Trans. Graph. (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Dey, F. Fan, and Y. Wang. 2013. An Efficient Computation of Handle and Tunnel Loops via Reeb Graphs. ACM Trans. Graph. 32, 4 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine. 2014. Designing N-PolyVector Fields with Complex Polynomials. Proc. Symp. Geom. Proc. 33, 5 (Aug. 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M.P. do Carmo. 1994. Differential Forms and Applications. Springer-Verlag.Google ScholarGoogle Scholar
  16. J. Frauendiener. 2006. Discrete differential forms in general relativity. Classical and Quantum Gravity 23, 16 (2006).Google ScholarGoogle Scholar
  17. X. Gao, W. Jakob, M. Tarini, and D. Panozzo. 2017. Robust Hex-dominant Mesh Generation Using Polyhedral Agglomeration. ACM Trans. Graph. 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Hertzmann and D. Zorin. 2000. Illustrating Smooth Surfaces. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Hirani. 2003. Discrete Exterior Calculus. Ph.D. Dissertation. Caltech. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Huang, Y. Tong, H. Wei, and H. Bao. 2011. Boundary Aligned Smooth 3D Cross-frame Field. ACM Trans. Graph. 30, 6, Article 143 (Dec. 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Jiang, X. Fang, J. Huang, H. Bao, Y. Tong, and M. Desbrun. 2015. Frame Field Generation Through Metric Customization. ACM Trans. Graph. 34, 4 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Junho Kim, M. Jin, Q. Zhou, F. Luo, and X. Gu. 2008. Computing Fundamental Group of General 3-Manifold. In Advances in Visual Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Lee. 2003. Introduction to Smooth Manifolds. Springer.Google ScholarGoogle Scholar
  25. Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. 2012. All-hex Meshing Using Singularity-restricted Field. ACM Trans. Graph. 31, 6 (Nov. 2012), 177:1--177:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Lipman, D. Cohen-Or, R. Gal, and D. Levin. 2007. Volume and Shape Preservation via Moving Frame Manipulation. ACM Trans. Graph. 26, 1 (Jan. 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. 2005. Linear Rotation-invariant Coordinates for Meshes. ACM Trans. Graph. 24, 3 (July 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. H. Liu, P. Zhang, E. Chien, J. Solomon, and D. Bommes. 2018. Singularity-constrained Octahedral Fields for Hexahedral Meshing. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Lyon, D. Bommes, and L. Kobbelt. 2016. HexEx: Robust Hexahedral Mesh Extraction. ACM Trans. Graph. 35, 4 (July 2016), 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. E. Mansfield, G. Marí Beffa, and J.P. Wang. 2013. Discrete moving frames and discrete integrable systems. Found. Comput. Math. 13, 4 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Moré. 1978. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis, G.A. Watson (Ed.). Lecture Notes in Mathematics, Vol. 630.Google ScholarGoogle Scholar
  32. M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover: Parameterization of 3D Volumes. Computer Graphics Forum 30, 5 (2011).Google ScholarGoogle Scholar
  33. P. Olver. 2000. Moving Frames in Geometry, Algebra, Computer Vision, and Numerical Analysis. In Foundations of Computational Mathematics.Google ScholarGoogle Scholar
  34. J. Palacios, L. Roy, P. Kumar, C.Y. Hsu, W. Chen, C. Ma, L.Y. Wei, and E. Zhang. 2017. Tensor Field Design in Volumes. ACM Trans. Graph. 36, 6 (Nov. 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Palacios and E. Zhang. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3 (July 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Pan, Y. Liu, A. Sheffer, N. Vining, C.J. Li, and W. Wang. 2015. Flow Aligned Surfacing of Curve Networks. ACM Trans. Graph. 34, 4 (July 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. N. Ray, D. Sokolov, and B. Lévy. 2016. Practical 3D Frame Field Generation. ACM Trans. Graph. 35, 6 (Nov. 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R.W. Sharpe. 2000. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. Springer New York.Google ScholarGoogle Scholar
  39. H. Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. 41, 2 (Feb. 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Soliman, D. Slepčev, and K. Crane. 2018. Optimal Cone Singularities for Conformal Flattening. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Solomon, A. Vaxman, and D. Bommes. 2017. Boundary Element Octahedral Fields in Volumes. ACM Trans. Graph. 36, 4, Article 114b (May 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vaxman, Campen, Diamanti, Panozzo, Bommes, Hildebrandt, and Ben-Chen. 2016. Directional Field Synthesis, Design and Processing. Comp. Graph. Forum (2016).Google ScholarGoogle Scholar
  43. V. Vyas and K. Shimada. 2009. Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-Hex Regions. In Proc. Int. Mesh. Roundtable, Brett W. Clark (Ed.).Google ScholarGoogle Scholar
  44. F.W. Warner. 2013. Foundations of Differentiable Manifolds and Lie Groups.Google ScholarGoogle Scholar
  45. W. Yu, K. Zhang, and X. Li. 2015. Recent algorithms on automatic hexahedral mesh generation. In Int. Conf. Comp. Sci. Ed. 697--702.Google ScholarGoogle Scholar

Index Terms

  1. Symmetric moving frames

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 38, Issue 4
      August 2019
      1480 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3306346
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 July 2019
      Published in tog Volume 38, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader