skip to main content
10.1145/3308560.3320099acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Human Mobility from theory to practice:Data, Models and Applications

Published:13 May 2019Publication History

ABSTRACT

The inclusion of tracking technologies in personal devices opened the doors to the analysis of large sets of mobility data like GPS traces and call detail records. This tutorial presents an overview of both modeling principles of human mobility and machine learning models applicable to specific problems. We review the state of the art of five main aspects in human mobility: (1) human mobility data landscape; (2) key measures of individual and collective mobility; (3) generative models at the level of individual, population and mixture of the two; (4) next location prediction algorithms; (5) applications for social good. For each aspect, we show experiments and simulations using the Python library ”scikit-mobility” developed by the presenters of the tutorial.

References

  1. Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco, and Alessandro Vespignani. 2009. Multiscale mobility networks and the spatial spreading of infectious diseases. PNAS 106, 51 (2009), 21484–21489.Google ScholarGoogle ScholarCross RefCross Ref
  2. Hugo Barbosa, Fernando B. de Lima-Neto, Alexandre Evsukoff, and Ronaldo Menezes. 2015. The effect of recency to human mobility. EPJ Data Science 4, 1 (2015), 21.Google ScholarGoogle ScholarCross RefCross Ref
  3. Hugo Barbosa and et al.2018. Human mobility: Models and applications. Physics Reports (2018).Google ScholarGoogle Scholar
  4. Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland, and Bruno Lepri. 2015. A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Scientific data 2(2015), 150055.Google ScholarGoogle Scholar
  5. Gianni Barlacchi, Christos Perentis, Abhinav Mehrotra, Mirco Musolesi, and Bruno Lepri. 2017. Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors. EPJ Data Science 6, 1 (2017), 27.Google ScholarGoogle ScholarCross RefCross Ref
  6. Vincent D Blondel, Adeline Decuyper, and Gautier Krings. 2015. A survey of results on mobile phone datasets analysis. EPJ Data Science 4, 1 (2015), 10.Google ScholarGoogle ScholarCross RefCross Ref
  7. Patrick Bonnel, Etienne Hombourger, Ana-Maria Olteanu-Raimond, and Zbigniew Smoreda. 2015. Passive Mobile Phone Dataset to Construct Origin-destination Matrix: Potentials and Limitations. Transportation Research Procedia 11 (2015), 381 – 398.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. Brockmann, L. Hufnagel, and T. Geisel. 2006. The scaling laws of human travel. Nature 439, 7075 (26 01 2006), 462–465.Google ScholarGoogle Scholar
  9. Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. 2006. The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences 103, 7 (2006), 2015–2020.Google ScholarGoogle ScholarCross RefCross Ref
  10. Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent Networks. (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Michele Ferretti, Gianni Barlacchi, Luca Pappalardo, Lorenzo Lucchini, and Bruno Lepri. 2018. Weak nodes detection in urban transport systems: Planning for resilience in Singapore. arXiv preprint arXiv:1809.07839(2018).Google ScholarGoogle Scholar
  12. F. Giannotti, L. Pappalardo, D. Pedreschi, and D. Wang. 2013. A Complexity Science Perspective on Human Mobility. Cambridge University Press, 297–314.Google ScholarGoogle Scholar
  13. Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Understanding individual human mobility patterns. Nature 453, 7196 (2008), 779.Google ScholarGoogle Scholar
  14. Renhe Jiang, Xuan Song, Zipei Fan, Tianqi Xia, Quanjun Chen, Satoshi Miyazawa, and Ryosuke Shibasaki. 2018. DeepUrbanMomentum: An Online Deep-Learning System for Short-Term Urban Mobility Prediction.. In AAAI.Google ScholarGoogle Scholar
  15. Shan Jiang, Yingxiang Yang, Siddharth Gupta, Daniele Veneziano, Shounak Athavale, and Marta C. González. 2016. The TimeGeo modeling framework for urban mobility without travel surveys. PNAS 113, 37 (2016). arXiv:http://www.pnas.org/content/113/37/E5370.full.pdfGoogle ScholarGoogle Scholar
  16. Chaogui Kang, Yu Liu, Diansheng Guo, and Kun Qin. 2015. A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint. PLoS ONE 10, 11 (11 2015), 1–11.Google ScholarGoogle Scholar
  17. Miao Lin and Wen-Jing Hsu. 2014. Mining GPS data for mobility patterns: A survey. Pervasive and Mobile Computing 12 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  18. Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts.. In AAAI. 194–200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Xin Lu, Erik Wetter, Nita Bharti, Andrew J. Tatem, and Linus Bengtsson. 2013. Approaching the Limit of Predictability in Human Mobility. Scientific Reports 3 (11 10 2013).Google ScholarGoogle Scholar
  20. Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. 2015. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems 16, 2(2015), 865–873.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Wesley Mathew, Ruben Raposo, and Bruno Martins. 2012. Predicting future locations with hidden Markov models. In Procs of the 2012 ACM conference on ubiquitous computing. 911–918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009. Wherenext: a location predictor on trajectory pattern mining. In Procs of the 15th ACM SIGKDD Int Conf on Knowledge discovery and data mining. 637–646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luca Pappalardo, Salvatore Rinzivillo, and Filippo Simini. 2016. Human Mobility Modelling: Exploration and Preferential Return Meet the Gravity Model. Procedia Computer Science 83 (2016), 934–939.Google ScholarGoogle ScholarCross RefCross Ref
  24. Luca Pappalardo and Filippo Simini. 2017. Data-driven generation of spatio-temporal routines in human mobility. Data Mining and Knowledge Discovery(2017), 1–43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Luca Pappalardo, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti, and Albert-Laszlo Barabasi. 2015. Returners and explorers dichotomy in human mobility. Nature Comm 6(2015).Google ScholarGoogle Scholar
  26. Luca Pappalardo, Maarten Vanhoof, Lorenzo Gabrielli, Zbigniew Smoreda, Dino Pedreschi, and Fosca Giannotti. 2016. An analytical framework to nowcast well-being using mobile phone data. International Journal of Data Science and Analytics 2, 1 (01 Dec 2016), 75–92.Google ScholarGoogle ScholarCross RefCross Ref
  27. Roberto Pellungrini, Luca Pappalardo, Francesca Pratesi, and Anna Monreale. 2017. A Data Mining Approach to Assess Privacy Risk in Human Mobility Data. ACM Trans. Intell. Syst. Technol. 9, 3, Article 31 (Dec. 2017), 27 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nicholas G Polson and Vadim O Sokolov. 2017. Deep learning for short-term traffic flow prediction. Transportation Research Part C: Emerging Technologies 79 (2017), 1–17.Google ScholarGoogle ScholarCross RefCross Ref
  29. Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H Strogatz, and Carlo Ratti. 2014. Quantifying the benefits of vehicle pooling with shareability networks. PNAS 111, 37 (2014).Google ScholarGoogle Scholar
  30. Christian M. Schneider, Vitaly Belik, Thomas Couronné, Zbigniew Smoreda, and Marta C. González. 2013. Unravelling daily human mobility motifs. Journal of The Royal Society Interface 10, 84 (2013). arXiv:http://rsif.royalsocietypublishing.org/content/10/84/20130246.full.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  31. Filippo Simini, Marta C. Gonzalez, Amos Maritan, and Albert-Laszlo Barabasi. 2012. A universal model for mobility and migration patterns. Nature 484, 7392 (05 04 2012), 96–100.Google ScholarGoogle Scholar
  32. Filippo Simini, Amos Maritan, and Zoltán Néda. 2013. Human mobility in a continuum approach. PloS one 8, 3 (2013), e60069.Google ScholarGoogle ScholarCross RefCross Ref
  33. Chaoming Song, Tal Koren, Pu Wang, and Albert-Laszlo Barabasi. 2010. Modelling the scaling properties of human mobility. Nature Physics 6, 10 (10 2010), 818–823.Google ScholarGoogle Scholar
  34. Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. Limits of Predictability in Human Mobility. Science 327, 5968 (2010), 1018–1021. arXiv:http://science.sciencemag.org/content/327/5968/1018.full.pdfGoogle ScholarGoogle Scholar
  35. Laura Spinsanti, Michele Berlingerio, and Luca Pappalardo. 2013. Mobility and Geo-Social Networks. In Mobility Data: Modeling, Management, and Understanding. 315–333.Google ScholarGoogle Scholar
  36. Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and Albert-László Barabási. 2011. Human mobility, social ties, and link prediction. In Procs of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. 1100–1108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Hongjian Wang and Zhenhui Li. 2017. Region Representation Learning via Mobility Flow. In Procs of the 2017 ACM on Conference on Information and Knowledge Management. 237–246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. R. Wu, G. Luo, J. Shao, L. Tian, and C. Peng. 2018. Location prediction on trajectory data: A review. Big Data Mining and Analytics 1, 2 (June 2018), 108–127.Google ScholarGoogle Scholar
  39. Xiao-Yong Yan, Chen Zhao, Ying Fan, Zengru Di, and Wen-Xu Wang. 2014. Universal predictability of mobility patterns in cities. Journal of The Royal Society Interface 11, 100 (2014), 20140834.Google ScholarGoogle ScholarCross RefCross Ref
  40. Cheng Yang, Maosong Sun, Wayne Xin Zhao, Zhiyuan Liu, and Edward Y Chang. 2017. A Neural Network Approach to Jointly Modeling Social Networks and Mobile Trajectories. ACM Transactions on Information Systems (TOIS) 35, 4 (2017), 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. 2017. Deepsense: A unified deep learning framework for time-series mobile sensing data processing. In Procs of the 26th Int Conf on World Wide Web. 351–360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nicholas Jing Yuan, Yu Zheng, and Xing Xie. 2018. Discovering Functional Zones in a City Using Human Movements and Points of Interest. In Spatial Analysis and Location Modeling in Urban and Regional Systems. Springer, 33–62.Google ScholarGoogle Scholar
  43. Chao Zhang, Keyang Zhang, Quan Yuan, Luming Zhang, Tim Hanratty, and Jiawei Han. 2016. Gmove: Group-level mobility modeling using geo-tagged social media. In Procs of the 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. 1305–1314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.. In AAAI. 1655–1661. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Human Mobility from theory to practice:Data, Models and Applications
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '19: Companion Proceedings of The 2019 World Wide Web Conference
      May 2019
      1331 pages
      ISBN:9781450366755
      DOI:10.1145/3308560

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 May 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format