skip to main content
survey

Handcrafted and Deep Trackers: Recent Visual Object Tracking Approaches and Trends

Authors Info & Claims
Published:30 April 2019Publication History
Skip Abstract Section

Abstract

In recent years, visual object tracking has become a very active research area. An increasing number of tracking algorithms are being proposed each year. It is because tracking has wide applications in various real-world problems such as human-computer interaction, autonomous vehicles, robotics, surveillance, and security just to name a few. In the current study, we review latest trends and advances in the tracking area and evaluate the robustness of different trackers based on the feature extraction methods. The first part of this work includes a comprehensive survey of the recently proposed trackers. We broadly categorize trackers into Correlation Filter based Trackers (CFTs) and Non-CFTs. Each category is further classified into various types based on the architecture and the tracking mechanism. In the second part of this work, we experimentally evaluated 24 recent trackers for robustness and compared handcrafted and deep feature based trackers. We observe that trackers using deep features performed better, though in some cases a fusion of both increased performance significantly. To overcome the drawbacks of the existing benchmarks, a new benchmark Object Tracking and Temple Color (OTTC) has also been proposed and used in the evaluation of different algorithms. We analyze the performance of trackers over 11 different challenges in OTTC and 3 other benchmarks. Our study concludes that Discriminative Correlation Filter (DCF) based trackers perform better than the others. Our study also reveals that inclusion of different types of regularizations over DCF often results in boosted tracking performance. Finally, we sum up our study by pointing out some insights and indicating future trends in the visual object tracking field.

References

  1. Marjan Abdechiri, Karim Faez, and Hamidreza Amindavar. 2017. Visual object tracking with online weighted chaotic multiple instance learning. Neurocomputing 247 (2017), 16--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34, 11 (2012), 2274--2282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amit Adam, Ehud Rivlin, and Ilan Shimshoni. 2006. Robust fragments-based tracking using the integral histogram. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jake K. Aggarwal and Lu Xia. 2014. Human activity recognition from 3D data: A review. Pattern Recognition Letters 48 (2014), 70--80.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ahmad Ali, Abdul Jalil, Jianwei Niu, Xiaoke Zhao, Saima Rathore, Javed Ahmed, and Muhammad Aksam Iftikhar. 2016. Visual object tracking—Classical and contemporary approaches. FCS 10, 1 (2016), 167--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Saad Ali and Mubarak Shah. 2010. Human action recognition in videos using kinematic features and multiple instance learning. IEEE TPAMI 32, 2 (2010), 288--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE TSP 50, 2 (2002), 174--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Boris Babenko, M. H. Yang, and Serge Belongie. 2009. Visual tracking with online multiple instance learning. In Proceedings of the CVPR. IEEE, 983--990.Google ScholarGoogle ScholarCross RefCross Ref
  9. Boris Babenko, M. H. Yang, and Serge Belongie. 2011. Robust object tracking with online multiple instance learning. IEEE TPAMI 33, 8 (2011), 1619--1632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bing Bai, Bineng Zhong, Gu Ouyang, Pengfei Wang, Xin Liu, Ziyi Chen, and Cheng Wang. 2018. Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues. Neurocomputing 286 (2018), 109--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. 2011. Multiple object tracking using k-shortest paths optimization. IEEE TPAMI 33, 9 (2011), 1806--1819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P Torr. 2016. Staple complementary learners for realtime tracking. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  13. Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. 2016. Fully-convolutional Siamese networks for object tracking. In Proceedings of the ECCVW. Springer, 850--865.Google ScholarGoogle Scholar
  14. R. S. Blum and Z. Liu. 2005. Multi-sensor image fusion and its applications. CRC press, Taylor 8 Francis Group.Google ScholarGoogle Scholar
  15. D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. 2010. Visual object tracking using adaptive correlation filters. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  16. David S. Bolme, Bruce A. Draper, and J. Ross Beveridge. 2009. Average of synthetic exact filters. In Proceedings of the CVPR. IEEE, 2105--2112.Google ScholarGoogle Scholar
  17. Yuanfeng Zhou, Brekhna Brekhna, Arif Mahmood, and Caiming Zhang. 2017. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise. J. Electron. Imag. 26, 6 (2017), 61604.Google ScholarGoogle Scholar
  18. B. Cai, X. Xu, X. Xing, K. Jia, J. Miao, and D. Tao. 2016. BIT: Biologically inspired tracker. IEEE TIP 25, 3 (2016), 1327--1339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kevin Cannons. 2008. A Review of Visual Tracking. Technical Report CSE-2008-07. Department of Computer Science Engineering, York University, Toronto, Canada.Google ScholarGoogle Scholar
  20. Kai Chen and Wenbing Tao. 2018. Once for all: A two-flow convolutional neural network for visual tracking. IEEE TCSVT 28, 12 (2018), 3377--3386.Google ScholarGoogle Scholar
  21. K. Chen, W. Tao, and S. Han. 2017. Visual object tracking via enhanced structural correlation filter. Elsevier Inf. Sci. 394 (2017), 232--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Wei Chen, Kaihua Zhang, and Qingshan Liu. 2016. Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble. Neurocomputing 214 (2016), 607--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. X. Chen, P. J. Flynn, and K. W. Bowyer. 2006. Fusion of infrared and range data: Multi-modal face images. In Proceedings of the ICB. Springer, 55--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Chen, Z. Hong, and D. Tao. 2015. An experimental survey on correlation filter-based tracking. CoRR. Retrieved from abs/1509.05520).Google ScholarGoogle Scholar
  25. G. Chéron, I. Laptev, and C. Schmid. 2015. P-CNN: Pose-based CNN features for action recognition. In Proceedings of the ICCV. IEEE, 3218--3226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Zhizhen Chi, Hongyang Li, Huchuan Lu, and M. H. Yang. 2017. Dual deep network for visual tracking. IEEE TIP 26, 4 (2017), 2005--2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Choi, H. J. Chang, S. Yun, T. Fischer, Y. Demiris, and J. Y. Choi. 2017. Attentional correlation filter network for adaptive visual tracking. In Proceedings of the CVPR. IEEE, 4828--4837.Google ScholarGoogle Scholar
  28. Jongwon Choi and Jin Young Choi. 2015. User interactive segmentation with partially growing random forest. In Proceedings of the ICIP. IEEE.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jongwon Choi, Hyung Jin Chang, Jiyeoup Jeong, Yiannis Demiris, and Jin Young Choi. 2016. Visual tracking using attention-modulated disintegration and integration. In Proceedings of the CVPR. IEEE, 4321--4330.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Choi, J. Kwon, and K. M. Lee. 2017. Visual tracking by reinforced decision making. Retrieved from arXiv:1702.06291.Google ScholarGoogle Scholar
  31. S. Chopra, R. Hadsell, and Y. LeCun. 2005. Learning similarity metric discriminatively, with application face verification. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhen Cui, Shengtao Xiao, Jiashi Feng, and Shuicheng Yan. 2016. Recurrently target-attending tracking. In Proceedings of the CVPR. IEEE, 1449--1458.Google ScholarGoogle ScholarCross RefCross Ref
  33. M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. 2017. ECO: Efficient convolution operators for tracking. In Proceedings of the CVPR. IEEE, 6931--6939.Google ScholarGoogle Scholar
  34. M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. 2017. Discriminative scale space tracking. IEEE TPAMI 39 (2017), 1561--1575.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. 2015. Convolutional features for correlation filter based tracking. In Proceedings of the ICCVW. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. 2015. Learning spatially regularized correlation filters for tracking. In Proceedings of the ICCV. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. 2016. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking. In Proceedings of the CVPR. IEEE, 1430--1438.Google ScholarGoogle Scholar
  38. M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. 2016. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the ECCV. Springer.Google ScholarGoogle Scholar
  39. M. Danelljan, F. S. Khan, M. Felsberg, and J. Van de Weijer. 2014. Adaptive color attributes for real-time visual tracking. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van der Smagt, D. Cremers, and T. Brox. 2015. Flownet: Learning optical flow with convolutional networks. In Proceedings of the ICCV. IEEE, 2758--2766. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Dawei Du, Honggang Qi, Wenbo Li, Longyin Wen, Qingming Huang, and Siwei Lyu. 2016. Online deformable object tracking based on structure-aware hyper-graph. TIP 25, 8 (2016), 3572--3584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Dawei Du, Honggang Qi, Longyin Wen, Qi Tian, Qingming Huang, and Siwei Lyu. 2017. Geometric hypergraph learning for visual tracking. IEEE TC 47, 12 (2017), 4182--4195.Google ScholarGoogle Scholar
  43. Yong Du, Yun Fu, and Liang Wang. 2016. Representation learning of temporal dynamics for skeleton-based action recognition. IEEE TIP 25, 7 (2016), 3010--3022.Google ScholarGoogle Scholar
  44. Leila Essannouni, Elhassane Ibn-Elhaj, and Driss Aboutajdine. 2006. Fast cross-spectral image registration using new robust correlation. Springer JRTIP 1, 2 (2006), 123--129.Google ScholarGoogle Scholar
  45. H. Fan and H. Ling. 2017. Parallel tracking and verifying: A framework for real-time and high accuracy visual tracking. In Proceedings of the IEEE International Conference on Computer Vision. 5486--5494.Google ScholarGoogle Scholar
  46. Heng Fan and Haibin Ling. 2017. SANet: Structure-aware network for visual tracking. In Proceedings of the CVPRW. 2217--2224.Google ScholarGoogle ScholarCross RefCross Ref
  47. M. Farid, A. Mahmood, and S. Al Maadeed. 2019. Multi-focus image fusion using content adaptive blurring. Inf. Fusion 45 (2019), 96--112.Google ScholarGoogle ScholarCross RefCross Ref
  48. Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. 2010. Object detection with discriminatively trained part-based models. IEEE TPAMI 32, 9 (2010), 1627--1645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Idir Filali, Mohand Saïd Allili, and Nadjia Benblidia. 2016. Multi-scale salient object detection using graph ranking and global--local saliency refinement. Elsevier Signal Proc. Image 47 (2016), 380--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. David Forsyth. 2014. Object detection with discriminatively trained part-based models. Computer 47, 2 (2014), 6--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C. Gao, F. Chen, J. G. Yu, R. Huang, and N. Sang. 2017. Robust tracking using exemplar-based detectors. IEEE TCSVT 27, 2 (2017), 300--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. C. Gao, H. Shi, J. G. Yu, and N. Sang. 2016. Enhancement of ELDA based on CNN and adaptive model update. Sensors 16, 4 (2016), 545.Google ScholarGoogle ScholarCross RefCross Ref
  53. Junyu Gao, Tianzhu Zhang, Xiaoshan Yang, and Changsheng Xu. 2017. Deep relative tracking. IEEE TIP 26, 4 (2017), 1845--1858. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Gao, T. Zhang, X. Yang, and C. Xu. 2018. P2t: Part-to-target tracking via deep regression learning. IEEE TIP 27, 6 (2018), 3074--3086.Google ScholarGoogle Scholar
  55. R. Girshick, J. Donahue, T. Darrell, and J. Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the CVPR. IEEE, 580--587. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. S. Gladh, M. Danelljan, F. S. Khan, and M. Felsberg. 2016. Deep motion features for visual tracking. In Proceedings of the ICPR. IEEE, 1243--1248.Google ScholarGoogle Scholar
  57. H. Gong, J. Sim, M. Likhachev, and J. Shi. 2011. Multi-hypothesis motion planning for visual object tracking. In Proceedings of the ICCV. IEEE, 619--626. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. I. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. W. Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. In Proceedings of the Conference on NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Graves, A. R. Mohamed, and G. Hinton. 2013. Speech recognition with deep recurrent neural networks. In Proceedings of the ICASSP. IEEE, 6645--6649.Google ScholarGoogle Scholar
  60. S. Gu, Y. Zheng, and C. Tomasi. 2010. Efficient visual object tracking with online nearest neighbor classifier. In Proceedings of the ACCV. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Guillaumin, J. J. Verbeek, and C. Schmid. 2010. Multiple instance metric learning from automatically labeled bags of faces. In Proceedings of the ECCV. Springer, 634--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. E. Gundogdu, A. Koc, B. Solmaz, R. I. Hammoud, and A. A. Alatan. 2016. Evaluation of feature channels for correlation-filter-based visual object tracking in infrared spectrum. In Proceedings of the CVPRW. IEEE, 290--298.Google ScholarGoogle Scholar
  63. Jie Guo, Tingfa Xu, Ziyi Shen, and Guokai Shi. 2017. Visual tracking via sparse representation with reliable structure constraint. IEEE SPL 24, 2 (2017), 146--150.Google ScholarGoogle Scholar
  64. Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang. 2017. Learning dynamic Siamese network for visual tracking. In Proceedings of the ICCV. IEEE.Google ScholarGoogle Scholar
  65. B. Han, J. Sim, and H. Adam. 2017. Branchout: Regularization for online ensemble tracking with CNN. In Proceedings of the CVPR. IEEE, 521--530.Google ScholarGoogle Scholar
  66. S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. M. Cheng, S. L. Hicks, and Philip H. S. Torr. 2016. Struck: Structured output tracking with kernels. IEEE TPAMI 38 (2016), 2096--2109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Sam Hare, Amir Saffari, and Philip H. S. Torr. 2011. Struck: Structured output tracking with kernels. In Proceedings of the ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the CVPR. IEEE, 770--778.Google ScholarGoogle Scholar
  69. D. Held, S. Thrun, and S. Savarese. 2016. Learning to track at 100 fps with deep regression networks. In Proceedings of the ECCV. Springer, 749--765.Google ScholarGoogle Scholar
  70. J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. 2012. Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of the ECCV. Springer, 702--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2015. High-speed tracking with kernelized correlation filters. IEEE TPAMI 37, 3 (2015), 583--596.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei, Danil Prokhorov, and Dacheng Tao. 2015. Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking. In Proceedings of the CVPR. IEEE, 749--758.Google ScholarGoogle ScholarCross RefCross Ref
  73. Hongwei Hu, Bo Ma, Jianbing Shen, and Ling Shao. 2018. Manifold regularized correlation object tracking. IEEE TNNLS 29, 5 (2018), 1786--1795.Google ScholarGoogle Scholar
  74. C. Huang, S. Lucey, and D. Ramanan. 2017. Learning policies for adaptive tracking with deep feature cascades. In Proceedings of the ICCV. IEEE.Google ScholarGoogle Scholar
  75. W. Huang, R. Hu, C. Liang, W. Ruan, and B. Luo. 2017. Structural superpixel descriptor for visual tracking. In Proceedings of the IJCNN. IEEE, 3146--3152.Google ScholarGoogle Scholar
  76. X. Jia, H. Lu, and M. H. Yang. 2012. Visual tracking via adaptive structural local sparse appearance model. In Proceedings of the CVPR. IEEE, 1822--1829. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. H. K. Galoogahi, A. Fagg, and S. Lucey. 2017. Learning background-aware correlation filters for visual tracking. In Proceedings of the ICCV. IEEE.Google ScholarGoogle Scholar
  78. H. K. Galoogahi, T. Sim, and S. Lucey. 2015. Correlation filters with limited boundaries. In Proceedings of the CVPR. IEEE, 4630--4638.Google ScholarGoogle Scholar
  79. Z. Kalal, J. Matas, and K. Mikolajczyk. 2010. Pn learning: Bootstrapping binary classifiers by structural constraints. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  80. Zdenek Kalal, Krystian Mikolajczyk, Jiri Matas.2012. Tracking-learning-detection. IEEE TPAMI 34, 7 (2012), 1409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. P. Karczmarek, A. Kiersztyn, W. Pedrycz, and M. Dolecki. 2017. An application of chain code-based local descriptor and its extension to face recognition. PR 65 (2017), 26--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. F. Fei. 2014. Large-scale video classification with convolutional neural networks. In Proceedings of the CVPR. IEEE, 1725--1732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Zulfiqar Hasan Khan, Irene Yu-Hua Gu, and Andrew G. Backhouse. 2011. Robust visual object tracking using multi-mode anisotropic mean shift and particle filters. IEEE TCSVT 21, 1 (2011), 74--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Matej Kristan, Roman Pflugfelder, Ale Leonardis, Jiri Matas, Fatih Porikli, Luka Cehovin, Georg Nebehay, Gustavo Fernandez, Toma Vojir, Adam Gatt, et al. 2013. The visual object tracking vot2013 challenge results. In Proceedings of the ICCVW. IEEE, 98--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Matej Kristan, Roman Pflugfelder, Ale Leonardis, Jiri Matas, Fatih Porikli, Luka Cehovin, Georg Nebehay, Gustavo Fernandez, Toma Vojir, Adam Gatt, et al. 2015. The visual object tracking VOT2014 challenge results. In Proceedings of the Computer Vision - ECCV 2014 Workshops, Agapito Lourdes Bronstein, M. Michael, and Rother Carsten (Eds.). Springer International Publishing, 191--217.Google ScholarGoogle ScholarCross RefCross Ref
  86. Matej Kristan, Roman Pflugfelder, Ale Leonardis, Jiri Matas, Fatih Porikli, Luka Cehovin, Georg Nebehay, Gustavo Fernandez, Toma Vojir, Adam Gatt, et al. 2015. The visual object tracking VOT2015 challenge results. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW'15). 564--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Matej Kristan, Roman Pflugfelder, Ale Leonardis, Jiri Matas, Fatih Porikli, Luka Cehovin, Georg Nebehay, Gustavo Fernandez, Toma Vojir, Adam Gatt, et al. 2016. The visual object tracking VOT2016 challenge results. In Proceedings of the Computer Vision -- ECCV 2016 Workshops. Springer International Publishing, 777--823.Google ScholarGoogle ScholarCross RefCross Ref
  88. Matej Kristan, Roman Pflugfelder, Ale Leonardis, Jiri Matas, Fatih Porikli, Luka Cehovin, Georg Nebehay, Gustavo Fernandez, Toma Vojir, Adam Gatt, et al. 2017. The visual object tracking VOT2017 challenge results. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW'17). 1949--1972.Google ScholarGoogle ScholarCross RefCross Ref
  89. Junseok Kwon and Kyoung Mu Lee. 2010. Visual tracking decomposition. In Proceedings of the CVPR. IEEE, 1269--1276.Google ScholarGoogle ScholarCross RefCross Ref
  90. L. L. Taixé, C. C. Ferrer, and K. Schindler. 2016. Learning by tracking: Siamese CNN for robust target association. In Proceedings of the CVPRW. IEEE, 33--40.Google ScholarGoogle Scholar
  91. L. L. Taixé, A. Milan, K. Schindler, D. Cremers, Ian Reid, and S. Roth. 2017. Tracking the trackers: An analysis of the state of the art in multiple object tracking. CoRR. Retrieved from abs/1704.02781.Google ScholarGoogle Scholar
  92. V. A. Laurense, J. Y. Goh, and J. C. Gerdes. 2017. Path-tracking for autonomous vehicles at the limit of friction. In Proceedings of the ACC. IEEE, 5586--5591.Google ScholarGoogle Scholar
  93. I. Leang, S. Herbin, B. Girard, and J. Droulez. 2018. On-line fusion of trackers for single-object tracking. PR 74 (2018), 459--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. J. Lee, B. K. Iwana, S. Ide, and S. Uchida. 2016. Globally optimal object tracking with fully convolutional networks. CoRR. arXiv preprint arXiv:1612.08274Google ScholarGoogle Scholar
  95. Annan Li and Shuicheng Yan. 2014. Object tracking with only background cues. IEEE TCSVT 24, 11 (2014), 1911--1919.Google ScholarGoogle Scholar
  96. Fu Li, Xu Jia, Cheng Xiang, and Huchuan Lu. 2017. Visual tracking with structured patch-based model. IVC 60 (2017), 124--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. F. Li, C. Tian, W. Zuo, L. Zhang, and M. H. Yang. 2018. Learning spatial-temporal regularized correlation filters tracking. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  98. Hanxi Li, Yi Li, and Fatih Porikli. 2016. Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE TIP 25, 4 (2016), 1834--1848.Google ScholarGoogle Scholar
  99. Hanxi Li, Chunhua Shen, and Qinfeng Shi. 2011. Real-time visual tracking using compressive sensing. In Proceedings of the CVPR. IEEE, 1305--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Meng Li and Howard Leung. 2016. Multiview skeletal interaction recognition using active joint interaction graph. IEEE TM 18, 11 (2016), 2293--2302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. P. Li, D. Wang, L. Wang, and H. Lu. 2018. Deep visual tracking: Review and experimental comparison. PR 76 (2018), 323--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. Van den Hengel. 2013. A survey of appearance models in visual object tracking. ACM TIST 4, 4 (2013), 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Y. Li and J. Zhu. 2014. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the ECCVW. Springer, 254--265.Google ScholarGoogle Scholar
  104. Y. Li, J. Zhu, and S. C. H. Hoi. 2015. Reliable patch trackers: Robust visual tracking by exploiting reliable patches. In Proceedings of the CVPR. IEEE, 353--361.Google ScholarGoogle ScholarCross RefCross Ref
  105. Pengpeng Liang, Erik Blasch, and Haibin Ling. 2015. Encoding color information for visual tracking: Algorithms and benchmark. IEEE TIP 24, 12 (2015), 5630--5644.Google ScholarGoogle Scholar
  106. Q. Liu, X. Zhao, and Z. Hou. 2014. Survey of single-target visual tracking methods based on online learning. IET-CV 8, 5 (2014), 419--428.Google ScholarGoogle Scholar
  107. S. Liu, T. Zhang, X. Cao, and C. Xu. 2016. Structural correlation filter for robust visual tracking. In Proceedings of the CVPR. IEEE, 4312--4320.Google ScholarGoogle Scholar
  108. T. Liu, G. Wang, and Q. Yang. 2015. Real-time part-based visual tracking via adaptive correlation filters. In Proceedings of the CVPR. IEEE, 4902--4912.Google ScholarGoogle Scholar
  109. Songjiang Lou, Xiaoming Zhao, Yuelong Chuang, Haitao Yu, and Shiqing Zhang. 2016. Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173 (2016), 290--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. A. Lukežič, L. Zajc, and M. Kristan. 2018. Deformable parts correlation filters for robust visual tracking. IEEE TC 48, 6 (2018), 1849--1861.Google ScholarGoogle Scholar
  111. A. Lukežič, T. Vojíř, L. Čehovin, J. Matas, and M. Kristan. 2017. DCF with channel and spatial reliability. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  112. Chengwei Luo, Bin Sun, Qiao Deng, Zihao Wang, and Dengwei Wang. 2018. Comparison of different level fusion schemes for infrared-visible object tracking: An experimental survey. In Proceedings of the ICRAS. IEEE, 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  113. C. Ma, J. B. Huang, X. Yang, and M. H. Yang. 2018. Robust visual tracking via hierarchical convolutional features. IEEE TPAMI (2018), 1--1.Google ScholarGoogle Scholar
  114. C. Ma, J. B. Huang, X. Yang, and M. H. Yang. 2015. Hierarchical convolutional features for visual tracking. In Proceedings of the ICCV. IEEE, 3074--3082. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. 2018. Adaptive correlation filters with long-term and short-term memory for object tracking. IJCV 126, 8 (2018), 771--796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Chao Ma, Xiaokang Yang, Chongyang Zhang, and M. H. Yang. 2015. Long-term correlation tracking. In Proceedings of the CVPR. IEEE, 5388--5396.Google ScholarGoogle Scholar
  117. L. Ma, J. Lu, J. Feng, and J. Zhou. 2015. Multiple feature fusion via weighted entropy for visual tracking. In Proceedings of the ICCV. 3128--3136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. H. K. Meena, K. K. Sharma, and S. D. Joshi. 2017. Improved facial expression recognition using graph sig. pro. IET EL 53, 11 (2017), 718--720.Google ScholarGoogle ScholarCross RefCross Ref
  119. Xue Mei and Haibin Ling. 2009. Robust visual tracking using â 1 minimization. In Proceedings of the ICCV. IEEE, 1436--1443.Google ScholarGoogle Scholar
  120. G. Mori, X. Ren, A. Efros, and J. Malik. 2004. Recovering human body configurations: Combining segmentation and recognition. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Matthias Mueller, Neil Smith, and Bernard Ghanem. 2017. Context-aware correlation filter tracking. In Proceedings of the CVPR. IEEE, 1387--1395.Google ScholarGoogle ScholarCross RefCross Ref
  122. H. Nam, M. Baek, and B. Han. 2016. Modeling and propagating CNNs in a tree structure for visual tracking. CoRR. Retrieved from abs/1608.07242.Google ScholarGoogle Scholar
  123. H. Nam and B. Han. 2016. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the CVPR. IEEE, 4293--4302.Google ScholarGoogle Scholar
  124. Jifeng Ning, Jimei Yang, Shaojie Jiang, Lei Zhang, and M. H. Yang. 2016. Object tracking via dual linear structured SVM and explicit feature map. In Proceedings of the CVPR. IEEE, 4266--4274.Google ScholarGoogle Scholar
  125. W. Ouyang, X. Zeng, X. Wang, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang, H. Li, K. Wang, J. Yan, C. C. Loy, and X. Tang. 2017. DeepID-net: Object detection with deformable part based convolutional neural networks. IEEE TPAMI 39, 7 (2017), 1320--1334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. 2007. Fast keypoint recognition in ten lines of code. In Proceedings of the CVPR. IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  127. Jiyan Pan and Bo Hu. 2007. Robust occlusion handling in object tracking. In Proceedings of the CVPR. IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  128. Houwen Peng, Bing Li, Haibin Ling, Weiming Hu, Weihua Xiong, and Stephen J. Maybank. 2017. Salient object detection via structured matrix decomposition. IEEE TPAMI 39, 4 (2017), 818--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. A. Prioletti, A. Møgelmose, P. Grisleri, M. M. Trivedi, A. Broggi, and T. B. Moeslund. 2013. Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation. IEEE TITS 14, 3 (2013), 1346--1359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M. H. Yang. 2016. Hedged deep tracking. In Proceedings of the CVPR. IEEE, 4303--4311.Google ScholarGoogle Scholar
  131. Lei Qin, Hichem Snoussi, and Fahed Abdallah. 2014. Object tracking using adaptive covariance descriptor and clustering-based model updating for visual surveillance. Sensors 14, 6 (2014), 9380--9407.Google ScholarGoogle ScholarCross RefCross Ref
  132. Deva Ramanan. 2013. Dual coordinate solvers for large-scale structural svms. Retrieved from arXiv:1312.1743.Google ScholarGoogle Scholar
  133. Madan Kumar Rapuru, Sumithra Kakanuru, Pallavi M. Venugopal, Deepak Mishra, and G. R. K. S. Subrahmanyam. 2017. Correlation-based tracker-level fusion for robust visual tracking. IEEE TIP 26, 10 (2017), 4832--4842.Google ScholarGoogle Scholar
  134. Mikel D. Rodriguez, Javed Ahmed, and Mubarak Shah. 2008. Action mach a spatio-temporal maximum average correlation height filter for action recognition. In Proceedings of the CVPR. IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  135. Adriana Romero, Carlo Gatta, and Gustau Camps-Valls. 2016. Unsupervised deep feature extraction for remote sensing image classification. IEEE TGRS 54, 3 (2016), 1349--1362.Google ScholarGoogle Scholar
  136. Marios Savvides, B. V. K. Vijaya Kumar, and Pradeep Khosla. 2002. Face verification using correlation filters. In Proceeding of the 3rd IEEE Automatic Identification Advanced Technologies. 56--61.Google ScholarGoogle Scholar
  137. F. Schroff, D. Kalenichenko, and J. Philbin. 2015. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  138. Joan Severson. 2017. Human-digital media interaction tracking. US Patent No. 9,713,444.Google ScholarGoogle Scholar
  139. V. Sharma and K. Mahapatra. 2017. MIL-based visual tracking with kernel and scale adaptation. Sig. Pro.: Img. Comm. 53 (2017), 51--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. CoRR. Retrieved from abs/1409.1556.Google ScholarGoogle Scholar
  141. Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, and Mubarak Shah. 2014. Visual tracking: An experimental survey. IEEE TPAMI 36, 7 (2014), 1442--1468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M. H. Yang. 2017. CREST convolutional residual learning for tracking. In Proceedings of the ICCV. IEEE.Google ScholarGoogle Scholar
  143. Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao Bao, Wangmeng Zuo, Chunhua Shen, Lau Rynson, and Ming-Hsuan Yang. 2018. VITAL: Visual tracking via adversarial learning. In Proceedings of the CVPR. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  144. Yao Sui, Ziming Zhang, Guanghui Wang, Yafei Tang, and Li Zhang. 2016. Real-time visual tracking: Promoting the robustness of correlation filter learning. In Proceedings of the ECCV. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  145. Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders. 2016. Siamese instance search for tracking. In Proceedings of the CVPR. IEEE, 1420--1429.Google ScholarGoogle Scholar
  146. Zhu Teng, Junliang Xing, Qiang Wang, Congyan Lang, Songhe Feng, and Yi Jin. 2017. Robust object tracking based on temporal and spatial deep networks. In Proceedings of the ICCV. IEEE, 1153--1162.Google ScholarGoogle ScholarCross RefCross Ref
  147. B. Tian, Q. Yao, Y. Gu, K. Wang, and Y. Li. 2011. Video processing techniques for traffic flow monitoring: A survey. In Proceedings of the ITSC. IEEE.Google ScholarGoogle Scholar
  148. Jack Valmadre, Luca Bertinetto, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. 2017. End-to-end representation learning for correlation filter based tracking. In Proceedings of the CVPR, 5000--5008.Google ScholarGoogle Scholar
  149. Andrea Vedaldi and Karel Lenc. 2015. Matconvnet: Convolutional neural networks for MATLAB. In Proceedings of the ACMMM. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. Sean Walker, Christopher Sewell, June Park, Prabu Ravindran, Aditya Koolwal, Dave Camarillo, and Federico Barbagli. 2017. Systems and methods for localizing, tracking, and/or controlling medical instruments. US Patent App. 15/466,565.Google ScholarGoogle Scholar
  151. Fan Wang, Yan Wu, Peng Zhang, Qingjun Zhang, and Ming Li. 2017. Unsupervised SAR image segmentation using ambiguity label information fusion in triplet Markov fields model. IEEE Geosci. Remote Sens. Lett. 14, 9 (2017), 1479--1483.Google ScholarGoogle ScholarCross RefCross Ref
  152. G. Wang, J. Wang, W. Tang, and N. Yu. 2017. Robust visual tracking with deep feature fusion. In Proceedings of the ICASSP. IEEE, 1917--1921.Google ScholarGoogle Scholar
  153. Jingjing Wang, Chi Fei, Liansheng Zhuang, and Nenghai Yu. 2016. Part-based multi-graph ranking for visual tracking. In Proceedings of the ICIP. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  154. Jun Wang, Weibin Liu, Weiwei Xing, and Shunli Zhang. 2017. Two-level superpixel and feedback-based visual object tracking. Neurocomputing 267 (2017), 581--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. Lijun Wang, Huchuan Lu, and M. H. Yang. 2018. Constrained superpixel tracking. IEEE TC 48, 3 (2018), 1030--1041.Google ScholarGoogle Scholar
  156. L. Wang, W. Ouyang, X. Wang, and H. Lu. 2016. STCT: Sequentially training convolutional networks for visual tracking. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  157. M. Wang, Y. Liu, and Z. Huang. 2017. Large margin object tracking with circulant feature maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4021--4029.Google ScholarGoogle Scholar
  158. Q. Wang, J. Gao, J. Xing, M. Zhang, and W. Hu. 2017. DCFNet: Discriminant correlation filters network for visual tracking. CoRR. Retrieved from abs/1704.04057).Google ScholarGoogle Scholar
  159. Tao Wang and Haibin Ling. 2018. Gracker: A graph-based planar object tracker. IEEE TPAMI 40, 6 (2018), 1494--1501.Google ScholarGoogle ScholarCross RefCross Ref
  160. X. Wang, C. Li, B. Luo, and J. Tang. 2018. SINT++: Robust visual tracking via adversarial positive instance generation. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  161. Zhenjie Wang, Lijia Wang, and Hua Zhang. 2017. Patch-based multiple instance learning algorithm for object tracking. Comp. Int. and Neurosc. 2017 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. Ronald J. Williams and David Zipser. 1989. A learning algorithm for continually running fully recurrent neural networks. MIT Press NC 1, 2 (1989), 270--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Philipose, and James M. Rehg. 2007. A scalable approach to activity recognition based on object use. In Proceedings of the ICCV. IEEE, 1--8.Google ScholarGoogle Scholar
  164. Yi Wu, Jongwoo Lim, and M. H. Yang. 2013. Online object tracking: A benchmark. In Proceedings of the CVPR. IEEE, 2411--2418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. Yi Wu, Jongwoo Lim, and M. H. Yang. 2015. Object tracking benchmark. IEEE TPAMI (2015), 1834--1848.Google ScholarGoogle Scholar
  166. Chao Xu, Wenyuan Tao, Zhaopeng Meng, and Zhiyong Feng. 2015. Robust visual tracking via online multiple instance learning with Fisher information. Elsevier PR 48, 12 (2015), 3917--3926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Fan Yang, Huchuan Lu, and M. H. Yang. 2014. Robust superpixel tracking. IEEE TIP 23, 4 (2014), 1639--1651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Honghong Yang, Shiru Qu, and Zunxin Zheng. 2018. Visual tracking via online discriminative multiple instance metric learning. Springer MTA 77, 4 (2018), 4113--4131.Google ScholarGoogle Scholar
  169. Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan Song. 2011. Recent advances and trends in visual tracking: A review. Neurocomputing 74, 18 (2011), 3823--3831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. Ming Yang, Ying Wu, and Gang Hua. 2009. Context-aware visual tracking. IEEE TPAMI 31, 7 (2009), 1195--1209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. M. Yang, Y. Wu, and S. Lao. 2006. Intelligent collaborative tracking by mining auxiliary objects. In Proceedings of the CVPR, Vol. 1. IEEE, 697--704. Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Rui Yao, Qinfeng Shi, Chunhua Shen, Yanning Zhang, and Anton van den Hengel. 2017. Part-based robust tracking using online latent structured learning. IEEE TCSVT 27, 6 (2017), 1235--1248.Google ScholarGoogle Scholar
  173. D. Yeo, J. Son, B. Han, and J. H. Han. 2017. Superpixel-based tracking-by-segmentation using Markov chains. In Proceedings of the CVPR. IEEE, 511--520.Google ScholarGoogle Scholar
  174. Yang Yi, Yang Cheng, and Chuping Xu. 2018. Visual tracking based on hierarchical framework and sparse representation. Springer MTA 77, 13 (2018), 16267--16289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. Alper Yilmaz, Omar Javed, and Mubarak Shah. 2006. Object tracking: A survey. ACM Comput. Surv. 38 (2006), 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. Alper Yilmaz, Xin Li, and Mubarak Shah. 2004. Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE TPAMI 26, 11 (2004), 1531--1536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  177. Qian Yu, Thang Ba Dinh, and Gérard Medioni. 2008. Online tracking and reacquisition using co-trained generative and discriminative trackers. In Proceedings of the ECCV. Springer, 678--691. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi. 2017. Action-decision net. for tracking with deep reinforcement learning. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  179. Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to compare image patches via convolutional neural networks. In Proceedings of the CVPR. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  180. J. Zbontar and Y. LeCun. 2015. Computing the stereo matching cost with a convolutional neural network. In Proceedings of the CVPR. IEEE, 1592--1599.Google ScholarGoogle Scholar
  181. Baochang Zhang, Zhigang Li, Alessandro Perina, Alessio Del Bue, Vittorio Murino, and Jianzhuang Liu. 2017. Adaptive local movement modeling for robust object tracking. IEEE TCSVT 27, 7 (2017), 1515--1526.Google ScholarGoogle Scholar
  182. Cha Zhang, John C. Platt, and Paul A. Viola. 2006. Multiple instance boosting for object detection. In Proceedings of the Conference on NIPS. 1417--1424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. 2017. Deep reinforcement learning for visual object tracking in videos. CoRR. Retrieved from abs/1701.08936.Google ScholarGoogle Scholar
  184. Jiaqi Zhang, Yao Deng, Zhenhua Guo, and Youbin Chen. 2016. Face recognition using part-based dense sampling local features. Neurocomputing 184 (2016), 176--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Kaihua Zhang, Qingshan Liu, Yi Wu, and M. H. Yang. 2016. Robust visual tracking via convolutional networks without training. IEEE TIP 25, 4 (2016), 1779--1792.Google ScholarGoogle Scholar
  186. L. Zhang, J. Varadarajan, P. Suganthan, N. Ahuja, and P. Moulin. 2017. Robust tracking using oblique random forests. In Proceedings of the CVPR. IEEE.Google ScholarGoogle Scholar
  187. M. Zhang, J. Xing, J. Gao, and W. Hu. 2015. Robust visual tracking using joint scale-spatial correlation filters. In Proceedings of the ICIP. IEEE, 1468--1472.Google ScholarGoogle Scholar
  188. Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi, Qiang Wang, and Weiming Hu. 2015. Joint scale-spatial correlation tracking with adaptive rotation estimation. In Proceedings of the ICCVW. IEEE, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. S. Zhang, H. Yao, X. Sun, and X. Lu. 2013. Sparse coding based visual tracking: Review and experimental comparison. PR 46, 7 (2013), 1772--1788. Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. 2012. Robust visual tracking via multi-task sparse learning. In Proceedings of the CVPR. IEEE, 2042--2049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja. 2016. Robust tracking via exclusive context modeling. IEEE TC 46, 1 (2016), 51--63.Google ScholarGoogle Scholar
  192. T. Zhang, K. Jia, C. Xu, Y. Ma, and N. Ahuja. 2014. Partial occlusion handling for tracking via robust part matching. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. T. Zhang, S. Liu, N. Ahuja, M. H. Yang, and B. Ghanem. 2015. Robust tracking via consistent low-rank sparse learning. IJCV 111, 2 (2015), 171--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M. H. Yang. 2015. Structural sparse tracking. In Proceedings of the CVPR. IEEE, 150--158.Google ScholarGoogle Scholar
  195. T. Zhang, C. Xu, and M. H. Yang. 2017. Multi-task correlation particle filter for robust object tracking. In Proceedings of the CVPR. IEEE, 4819--4827.Google ScholarGoogle Scholar
  196. Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang. 2019. Robust structural sparse tracking. IEEE TPAMI 41, 2 (2019), 473--486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  197. Wei Zhong, Huchuan Lu, and M. H. Yang. 2012. Robust object tracking via sparsity-based collaborative model. In Proceedings of the CVPR. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  198. B. Zhuang, L. Wang, and H. Lu. 2016. Visual tracking via shallow and deep collaborative model. Neurocomputing 218 (2016), 61--71. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Handcrafted and Deep Trackers: Recent Visual Object Tracking Approaches and Trends

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 52, Issue 2
      March 2020
      770 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/3320149
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 April 2019
      • Revised: 1 January 2019
      • Accepted: 1 January 2019
      • Received: 1 July 2018
      Published in csur Volume 52, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format