skip to main content
10.1145/3318464.3380596acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Public Access

Cryptϵ: Crypto-Assisted Differential Privacy on Untrusted Servers

Published:31 May 2020Publication History

ABSTRACT

Differential privacy (DP) is currently the de-facto standard for achieving privacy in data analysis, which is typically implemented either in the "central" or "local" model. The local model has been more popular for commercial deployments as it does not require a trusted data collector. This increased privacy, however, comes at the cost of utility and algorithmic expressibility as compared to the central model. In this work, we propose, Cryptε, a system and programming framework that (1) achieves the accuracy guarantees and algorithmic expressibility of the central model (2) without any trusted data collector like in the local model. Cryptε achieves the "best of both worlds" by employing two non-colluding untrusted servers that run DP programs on encrypted data from the data owners. In theory, straightforward implementations of DP programs using off-the-shelf secure multi-party computation tools can achieve the above goal. However, in practice, they are beset with many challenges like poor performance and tricky security proofs. To this end, Cryptε allows data analysts to author logical DP programs that are automatically translated to secure protocols that work on encrypted data. These protocols ensure that the untrusted servers learn nothing more than the noisy outputs, thereby guaranteeing DP (for computationally bounded adversaries) for all Cryptε programs. Cryptε supports a rich class of DP programs that can be expressed via a small set of transformation and measurement operators followed by arbitrary post-processing. Further, we propose performance optimizations leveraging the fact that the output is noisy. We demonstrate Cryptε's practical feasibility with extensive empirical evaluations on real world datasets.

Skip Supplemental Material Section

Supplemental Material

3318464.3380596.mp4

mp4

93.5 MB

References

  1. Google cloud platform. https://cloud.google.com.Google ScholarGoogle Scholar
  2. https://github.com/emp-toolkit.Google ScholarGoogle Scholar
  3. https://github.com/encryptogroup/aby.Google ScholarGoogle Scholar
  4. https://github.com/kuleuven-cosic/scale-mamba.Google ScholarGoogle Scholar
  5. http://www.multipartycomputation.com/mpc-software.Google ScholarGoogle Scholar
  6. Full version of the paper, 2019. https://arxiv.org/abs/1902.07756.Google ScholarGoogle Scholar
  7. A.Asuncion and D. Newman. Uci machine learning repository, 2010.Google ScholarGoogle Scholar
  8. J. M. Abowd and I. M. Schmutte. An economic analysis of privacy protection and statistical accuracy as social choices. American Economic Review, 109(1):171--202, January 2019.Google ScholarGoogle ScholarCross RefCross Ref
  9. G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publishing through lossy compression. In 2012 IEEE 12th International Conference on Data Mining, pages 1--10, Dec 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Agarwal, M. Herlihy, S. Kamara, and T. Moataz. Encrypted databases for differential privacy, 2018. https://eprint.iacr.org/2018/860.Google ScholarGoogle Scholar
  11. E. Aïmeur, G. Brassard, J. M. Fernandez, and F. S. Mani Onana. Alambic: a privacy-preserving recommender system for electronic commerce. International Journal of Information Security, 7(5), Oct 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Alwen, J. Katz, Y. Lindell, G. Persiano, a. shelat, and I. Visconti. Collusion-free multiparty computation in the mediated model. In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 524--540, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Barbosa, D. Catalano, and D. Fiore. Labeled homomorphic encryption - scalable and privacy-preserving processing of outsourced data. In ESORICS, 2017.Google ScholarGoogle Scholar
  14. R. Bassily and A. Smith. Local, private, efficient protocols for succinct histograms. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC '15, pages 127--135, New York, NY, USA, 2015. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Bater, X. He, S. Y. Tendryakova, A. Machanavajjhala, and J. Duggan. Shrinkwrap: Differentially-private query processing in private data federations. CoRR, abs/1810.01816, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Beaver. Precomputing oblivious transfer. In Proceedings of the 15th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO '95, pages 97--109, Berlin, Heidelberg, 1995. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis: Simultaneously solving how and what. In Proceedings of the 28th Annual Conference on Cryptology: Advances in Cryptology, CRYPTO 2008, pages 451--468, Berlin, Heidelberg, 2008. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Beimel, K. Nissim, and E. Omri. Distributed private data analysis: On simultaneously solving how and what. CoRR, abs/1103.2626, 2011.Google ScholarGoogle Scholar
  19. A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. approximate differential privacy. CoRR, abs/1407.2674, 2014.Google ScholarGoogle Scholar
  20. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, pages 409--426, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP '17, pages 441--459, New York, NY, USA, 2017. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, and V. Vaikuntanathan. Optimized homomorphic encryption solution for secure genome-wide association studies. IACR Cryptology ePrint Archive, 2019:223, 2019.Google ScholarGoogle Scholar
  23. J. Blocki, A. Blum, A. Datta, and O. Sheffet. The johnson-lindenstrauss transform itself preserves differential privacy. 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, Oct 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. W. Bos, W. Castryck, I. Iliashenko, and F. Vercauteren. Privacy-friendly forecasting for the smart grid using homomorphic encryption and the group method of data handling. In M. Joye and A. Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017, pages 184--201, Cham, 2017. Springer International Publishing.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe primes. In Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT'99, pages 107--122, Berlin, Heidelberg, 1999. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-preserving classification on deep neural network. IACR Cryptology ePrint Archive, 2017:35, 2017.Google ScholarGoogle Scholar
  27. P. Chaidos and G. Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge. IACR Cryptology ePrint Archive, 2017:1029, 2017.Google ScholarGoogle Scholar
  28. T.-H. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi. Foundations of differentially oblivious algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '19, pages 2448--2467, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T.-H. H. Chan, E. Shi, and D. Song. Optimal lower bound for differentially private multi-party aggregation. In Proceedings of the 20th Annual European Conference on Algorithms, ESA'12, pages 277--288, Berlin, Heidelberg, 2012. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. T. H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault tolerance. In A. D. Keromytis, editor, Financial Cryptography and Data Security, pages 200--214, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.Google ScholarGoogle ScholarCross RefCross Ref
  31. T. Chanyaswad, A. Dytso, H. V. Poor, and P. Mittal. Mvg mechanism: Differential privacy under matrix-valued query. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS '18, pages 230--246, New York, NY, USA, 2018. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy via mixnets. CoRR, abs/1808.01394, 2018.Google ScholarGoogle Scholar
  33. G. Cormode, T. Kulkarni, and D. Srivastava. Marginal release under local differential privacy. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD '18, pages 131--146, New York, NY, USA, 2018. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu. Differentially private spatial decompositions. 2012 IEEE 28th International Conference on Data Engineering, Apr 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. W.-Y. Day and N. Li. Differentially private publishing of high-dimensional data using sensitivity control. In Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, ASIA CCS '15, pages 451--462, New York, NY, USA, 2015. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Demmler, T. Schneider, and M. Zohner. Aby - a framework for efficient mixed-protocol secure two-party computation. In NDSS, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 429--438, Oct 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In Proceedings of the 24th Annual International Conference on The Theory and Applications of Cryptographic Techniques, EUROCRYPT'06, pages 486--503, Berlin, Heidelberg, 2006. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3&–4):211--407, Aug. 2014.Google ScholarGoogle Scholar
  40. C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS '10, pages 51--60, Washington, DC, USA, 2010. IEEE Computer Society.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. H. Ebadi and D. Sands. Featherweight pinq, 2015.Google ScholarGoogle Scholar
  42. Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. CoRR, abs/1811.12469, 2018.Google ScholarGoogle Scholar
  43. Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving ordinal response. In CCS, 2014.Google ScholarGoogle Scholar
  44. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '03, pages 211--222, New York, NY, USA, 2003. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. G. Fanti, V. Pihur, and Úlfar Erlingsson. Building a rappor with the unknown: Privacy-preserving learning of associations and data dictionaries, 2015.Google ScholarGoogle Scholar
  46. A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans. Secure linear regression on vertically partitioned datasets. IACR Cryptology ePrint Archive, 2016:892, 2016.Google ScholarGoogle Scholar
  47. A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans. Privacy-preserving distributed linear regression on high-dimensional data. PoPETs, 2017:345--364, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  48. C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala. Apex: Accuracy-aware differentially private data exploration. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD '19, pages 177--194, New York, NY, USA, 2019. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon. Privacy-preserving ridge regression with only linearly-homomorphic encryption. In B. Preneel and F. Vercauteren, editors, Applied Cryptography and Network Security, pages 243--261, Cham, 2018. Springer International Publishing.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. I. Giacomelli, S. Jha, R. Kleiman, D. Page, and K. Yoon. Privacy-preserving collaborative prediction using random forests, 2018.Google ScholarGoogle Scholar
  51. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. R. Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In ICML, 2016.Google ScholarGoogle Scholar
  52. A. Greenberg. Apple's `differential privacy' is about collecting your data--but not your data. Wired, Jun 13 2016.Google ScholarGoogle Scholar
  53. A. Groce, P. Rindal, and M. Rosulek. Cheaper private set intersection via differentially private leakage. Cryptology ePrint Archive, Report 2019/239, 2019. https://eprint.iacr.org/2019/239.Google ScholarGoogle Scholar
  54. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. Cryptology ePrint Archive, Report 2007/155, 2007. https://eprint.iacr.org/2007/155.Google ScholarGoogle Scholar
  55. M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data release. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS'12, pages 2339--2347, USA, 2012. Curran Associates Inc.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 61--70, Oct 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. Principled evaluation of differentially private algorithms using dpbench. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD '16, pages 139--154, New York, NY, USA, 2016. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. Proc. VLDB Endow., 3(1--2):1021--1032, Sept. 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. Proceedings of the VLDB Endowment, 3(1--2):1021--1032, Sep 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava. Composing differential privacy and secure computation: A case study on scaling private record linkage. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, pages 1389--1406, New York, NY, USA, 2017. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. E. Hesamifard, H. Takabi, and M. Ghasemi. Cryptodl: Deep neural networks over encrypted data, 2017.Google ScholarGoogle Scholar
  62. J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce, and A. Roth. Differential privacy: An economic method for choosing epsilon. 2014 IEEE 27th Computer Security Foundations Symposium, pages 398--410, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. N. M. Johnson, J. P. Near, and D. X. Song. Practical differential privacy for SQL queries using elastic sensitivity. CoRR, abs/1706.09479, 2017.Google ScholarGoogle Scholar
  64. S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryptology ePrint Archive, Report 2011/272, 2011. https://eprint.iacr.org/2011/272.Google ScholarGoogle Scholar
  65. S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we learn privately? In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 531--540, Oct 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  67. M. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983--1006, Nov. 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. S. Kim, J. Kim, D. Koo, Y. Kim, H. Yoon, and J. Shin. Efficient privacy-preserving matrix factorization via fully homomorphic encryption: Extended abstract. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIA CCS '16, pages 617--628, New York, NY, USA, 2016. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and G. Miklau. Privatesql: A differentially private sql query engine. Proc. VLDB Endow., 12(11):1371--1384, July 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. J. Lee and C. Clifton. How much is enough? choosing ε for differential privacy. In Proceedings of the 14th International Conference on Information Security, ISC'11, pages 325--340, Berlin, Heidelberg, 2011. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. C. Li, M. Hay, G. Miklau, and Y. Wang. A data- and workload-aware algorithm for range queries under differential privacy. Proceedings of the VLDB Endowment, 7(5):341--352, Jan 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '10, pages 123--134, New York, NY, USA, 2010. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory to Practice. Morgan and Claypool, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  74. Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party computation. J. Cryptol., 22(2):161--188, Apr. 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party computation. J. Cryptol., 22(2):161--188, Apr. 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. M. Lyu, D. Su, and N. Li. Understanding the sparse vector technique for differential privacy. PVLDB, 10:637--648, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. S. Mazloom and S. D. Gordon. Secure computation with differentially private access patterns. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS '18, pages 490--507, New York, NY, USA, 2018. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD '09, pages 19--30, New York, NY, USA, 2009. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. I. Mironov. Renyi differential privacy. CoRR, abs/1702.07476, 2017.Google ScholarGoogle Scholar
  80. I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential privacy. In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages 126--142, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19--38, May 2017.Google ScholarGoogle ScholarCross RefCross Ref
  82. A. Narayan and A. Haeberlen. Djoin: Differentially private join queries over distributed databases. In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI'12, pages 149--162, Berkeley, CA, USA, 2012. USENIX Association.Google ScholarGoogle Scholar
  83. T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. Collecting and analyzing data from smart device users with local differential privacy. CoRR, abs/1606.05053, 2016.Google ScholarGoogle Scholar
  84. V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. Privacy-preserving matrix factorization. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS '13, pages 801--812, New York, NY, USA, 2013. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-preserving ridge regression on hundreds of millions of records. In 2013 IEEE Symposium on Security and Privacy, pages 334--348, May 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. A. Nikolov, K. Talwar, and L. Zhang. The geometry of differential privacy. Proceedings of the 45th annual ACM symposium on Symposium on theory of computing - STOC '13, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA, 1st edition, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT'99, pages 223--238, Berlin, Heidelberg, 1999. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO '91, pages 129--140, London, UK, UK, 1992. Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. W. Qardaji, W. Yang, and N. Li. Differentially private grids for geospatial data. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages 757--768, April 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. W. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for differentially private histograms. Proc. VLDB Endow., 6(14):1954--1965, Sept. 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation over set-valued data with local differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS '16, pages 192--203, New York, NY, USA, 2016. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with transformation and encryption. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pages 735--746, New York, NY, USA, 2010. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. E. Shi, T.-H. Hubert Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of time-series data. volume 2, 01 2011.Google ScholarGoogle Scholar
  95. J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the keys to the intel sgx kingdom with transient out-of-order execution. In Proceedings of the 27th USENIX Conference on Security Symposium, SEC'18, pages 991--1008, Berkeley, CA, USA, 2018. USENIX Association.Google ScholarGoogle Scholar
  96. T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for frequency estimation. In Proceedings of the 26th USENIX Conference on Security Symposium, SEC'17, pages 729--745, Berkeley, CA, USA, 2017. USENIX Association.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter identification, 2017.Google ScholarGoogle Scholar
  98. T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset mining. In 2018 IEEE Symposium on Security and Privacy (SP), pages 127--143, May 2018.Google ScholarGoogle ScholarCross RefCross Ref
  99. X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling and efficient maliciously secure two-party computation. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS '17, pages 21--37, New York, NY, USA, 2017. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. L. Warner. "randomized response: A survey technique for eliminating evasive answer bias.". Journal of the American Statistical Association, 60 60, no. 309:63--69, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  101. X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: Differential privacy with reduced relative errors. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD '11, pages 229--240, New York, NY, USA, 2011. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), 2010.Google ScholarGoogle ScholarCross RefCross Ref
  103. J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differentially private histogram publication. In 2012 IEEE 28th International Conference on Data Engineering, pages 32--43, April 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. A. C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 162--167, Oct 1986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Low-rank mechanism. Proceedings of the VLDB Endowment, 5(11):1352--1363, Jul 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao. Optimizing batch linear queries under exact and approximate differential privacy. ACM Trans. Database Syst., 40(2):11:1--11:47, June 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanavajjhala, and G. Miklau. EKTELO: A framework for defining differentially-private computations. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10--15, 2018, pages 115--130, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. X. Zhang, R. Chen, J. Xu, X. Meng, and Y. Xie. Towards accurate histogram publication under differential privacy. In Proceedings of the 2014 SIAM International Conference on Data Mining, pages 587--595.Google ScholarGoogle Scholar
  109. Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. Calm: Consistent adaptive local marginal for marginal release under local differential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS '18, pages 212--229, New York, NY, USA, 2018. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Cryptϵ: Crypto-Assisted Differential Privacy on Untrusted Servers

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGMOD '20: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
          June 2020
          2925 pages
          ISBN:9781450367356
          DOI:10.1145/3318464

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 31 May 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate785of4,003submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader