skip to main content
research-article
Public Access

On the Computability of Conditional Probability

Published:14 June 2019Publication History
Skip Abstract Section

Abstract

As inductive inference and machine-learning methods in computer science see continued success, researchers are aiming to describe ever more complex probabilistic models and inference algorithms. It is natural to ask whether there is a universal computational procedure for probabilistic inference. We investigate the computability of conditional probability, a fundamental notion in probability theory, and a cornerstone of Bayesian statistics. We show that there are computable joint distributions with noncomputable conditional distributions, ruling out the prospect of general inference algorithms, even inefficient ones. Specifically, we construct a pair of computable random variables in the unit interval such that the conditional distribution of the first variable given the second encodes the halting problem. Nevertheless, probabilistic inference is possible in many common modeling settings, and we prove several results giving broadly applicable conditions under which conditional distributions are computable. In particular, conditional distributions become computable when measurements are corrupted by independent computable noise with a sufficiently smooth bounded density.

References

  1. Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2010. On the computability of conditional probability. Retrieved from http://arxiv.org/abs/1005.3014v1.Google ScholarGoogle Scholar
  2. Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2011. Noncomputable conditional distributions. In Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11). IEEE Computer Society, 107--116.Google ScholarGoogle Scholar
  3. Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. 1992. On the theory of average case complexity. J. Comput. System Sci. 44, 2 (1992), 193--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Jens Blanck. 1997. Domain representability of metric spaces. Ann. Pure Appl. Logic 83, 3 (1997), 225--247.Google ScholarGoogle ScholarCross RefCross Ref
  5. Volker Bosserhoff. 2008. Notions of probabilistic computability on represented spaces. J. Univ. Comput. Sci. 14, 6 (2008), 956--995.Google ScholarGoogle Scholar
  6. Mark Braverman. 2005. On the complexity of real functions. In Proceedings of the 46th Symposium on Foundations of Computer Science. IEEE Computer Society, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mark Braverman and Stephen Cook. 2006. Computing over the reals: Foundations for scientific computing. Notices Amer. Math. Soc. 53, 3 (2006), 318--329.Google ScholarGoogle Scholar
  8. Gregory F. Cooper. 1990. The computational complexity of probabilistic inference using Bayesian belief networks. Artific. Intell. 42, 2--3 (1990), 393--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Paul Dagum and Michael Luby. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artific. Intell. 60, 1 (1993), 141--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Paul Dagum and Michael Luby. 1997. An optimal approximation algorithm for Bayesian inference. Artific. Intell. 93, 1--2 (1997), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. François G. Dorais, Gerald Edgar, and Jason Rute. 2013. Continuity on a measure one set versus measure one set of points of continuity. MathOverflow. Retrieved from http://mathoverflow.net/q/146063 (version: 2013-10-27).Google ScholarGoogle Scholar
  12. Abbas Edalat. 1996. The Scott topology induces the weak topology. In Proceedings of the 11th IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 372--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Abbas Edalat and Reinhold Heckmann. 1998. A computational model for metric spaces. Theoret. Comput. Sci. 193, 1--2 (1998), 53--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cameron E. Freer and Daniel M. Roy. 2009. Computable exchangeable sequences have computable de Finetti measures. In Mathematical Theory and Computational Practice: Proceedings of the 5th Conference on Computability in Europe (CiE 2009). (Lecture Notes in Computer Sciience), Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle (Eds.), Vol. 5635. Springer, 218--231.Google ScholarGoogle Scholar
  15. Cameron E. Freer and Daniel M. Roy. 2010. Posterior distributions are computable from predictive distributions. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS’10). Y. W. Teh and M. Titterington (Eds.). JMLR: W8CP 9 (2010), 233--240.Google ScholarGoogle Scholar
  16. Cameron E. Freer and Daniel M. Roy. 2012. Computable de Finetti measures. Ann. Pure Appl. Logic 163, 5 (2012), 530--546.Google ScholarGoogle ScholarCross RefCross Ref
  17. Peter Gács. 2005. Uniform test of algorithmic randomness over a general space. Theoret. Comput. Sci. 341, 1--3 (2005), 91--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Stefano Galatolo, Mathieu Hoyrup, and Cristóbal Rojas. 2010. Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Inform. and Comput. 208, 1 (2010), 23--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Mark Gold. 1967. Language identification in the limit. Inform. and Control 10, 5 (1967), 447--474.Google ScholarGoogle ScholarCross RefCross Ref
  20. Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A language for generative models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Armin Hemmerling. 2002. Effective metric spaces and representations of the reals. Theoret. Comput. Sci. 284, 2 (2002), 347--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mathieu Hoyrup. 2008. Computability, Randomness and Ergodic Theory on Metric Spaces. Ph.D. Dissertation. Université Paris Diderot (Paris VII), Paris, France.Google ScholarGoogle Scholar
  23. Mathieu Hoyrup and Cristóbal Rojas. 2009a. An application of Martin-Löf randomness to effective probability theory. In Mathematical Theory and Computational Practice, Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle (Eds.). Lecture Notes in Computer Science, Vol. 5635. Springer, 260--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mathieu Hoyrup and Cristóbal Rojas. 2009b. Computability of probability measures and Martin-Löf randomness over metric spaces. Inform. and Comput. 207, 7 (2009), 830--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mathieu Hoyrup and Cristóbal Rojas. 2011. Absolute continuity of measures and preservation of randomness. (2011). Retrieved from https://members.loria.fr/MHoyrup/abscont.pdf.Google ScholarGoogle Scholar
  26. Mathieu Hoyrup, Cristóbal Rojas, and Klaus Weihrauch. 2011. Computability of the Radon-Nikodym derivative. In Models of Computation in Context, Proceedings of the 7th Conference on Computability in Europe (CiE 2011), Benedikt Löwe, Dag Normann, Ivan N. Soskov, and Alexandra A. Soskova (Eds.). Lecture Notes in Computer Science, Vol. 6735. Springer, 132--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marcus Hutter. 2007. On universal prediction and Bayesian confirmation. Theoret. Comput. Sci. 384, 1 (2007), 33--48.Google ScholarGoogle ScholarCross RefCross Ref
  28. Olav Kallenberg. 2002. Foundations of Modern Probability (2nd ed.). Springer, New York.Google ScholarGoogle Scholar
  29. Alexander S. Kechris. 1995. Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156. Springer-Verlag, New York.Google ScholarGoogle Scholar
  30. Oleg Kiselyov and Chung-chieh Shan. 2009. Embedded probabilistic programming. In Domain-Specific Languages, Walid Mohamed Taha (Ed.). Lecture Notes in Computer Science, Vol. 5658. Springer, 360--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stephen Cole Kleene. 1938. On notation for ordinal numbers. J. Symbolic Logic 3, 4 (1938), 150--155.Google ScholarGoogle ScholarCross RefCross Ref
  32. Donald E. Knuth and Andrew C. Yao. 1976. The complexity of nonuniform random number generation. In Proceedings of the Symposium on Algorithms and Complexity. Academic Press, New York, 357--428.Google ScholarGoogle Scholar
  33. A. N. Kolmogorov. 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer.Google ScholarGoogle Scholar
  34. Leonid A. Levin. 1986. Average case complete problems. SIAM J. Comput. 15, 1 (1986), 285--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Irwin Mann. 1973. Probabilistic recursive functions. Trans. Amer. Math. Soc. 177 (1973), 447--467.Google ScholarGoogle ScholarCross RefCross Ref
  36. T. Minka, J. M. Winn, J. P. Guiver, and D. A. Knowles. 2010. Infer.NET 2.4. Microsoft Research Cambridge. Cambridge, UK. Retrieved from http://research.microsoft.com/infernet.Google ScholarGoogle Scholar
  37. Kenshi Miyabe. 2013. L<sup>1</sup>-computability, layerwise computability and Solovay reducibility. Computability 2, 1 (2013), 15--29.Google ScholarGoogle ScholarCross RefCross Ref
  38. Yiannis N. Moschovakis. 2009. Descriptive Set Theory (2nd ed.). Mathematical Surveys and Monographs, Vol. 155. American Mathematical Society, Providence, RI.Google ScholarGoogle Scholar
  39. Norbert Th. Müller. 1999. Computability on random variables. Theoret. Comput. Sci. 219, 1--2 (1999), 287--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Myhill. 1971. A recursive function, defined on a compact interval and having a continuous derivative that is not recursive. Michigan Math. J. 18 (1971), 97--98.Google ScholarGoogle ScholarCross RefCross Ref
  41. André Nies. 2009. Computability and Randomness. Oxford Logic Guides, Vol. 51. Oxford University Press, Oxford. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Daniel N. Osherson, Michael Stob, and Scott Weinstein. 1988. Mechanical learners pay a price for Bayesianism. J. Symbolic Logic 53, 4 (1988), 1245--1251.Google ScholarGoogle ScholarCross RefCross Ref
  43. Sungwoo Park, Frank Pfenning, and Sebastian Thrun. 2008. A probabilistic language based on sampling functions. ACM Trans. Program. Lang. Syst. 31, 1 (2008), 1--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Pfanzagl. 1979. Conditional distributions as derivatives. Ann. Probab. 7, 6 (1979), 1046--1050.Google ScholarGoogle ScholarCross RefCross Ref
  45. Avi Pfeffer. 2001. IBAL: A probabilistic rational programming language. In Proceedings of the 17th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers, 733--740. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. David Poole. 1991. Representing Bayesian networks within probabilistic Horn abduction. In Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Marian B. Pour-El and J. Ian Richards. 1989. Computability in Analysis and Physics. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  48. Hilary Putnam. 1965. Trial and error predicates and the solution to a problem of Mostowski. J. Symbolic Logic 30 (1965), 49--57.Google ScholarGoogle ScholarCross RefCross Ref
  49. M. M. Rao. 1988. Paradoxes in conditional probability. J. Multivariate Anal. 27, 2 (1988), 434--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. M. Rao. 2005. Conditional Measures and Applications (2nd ed.). Pure and Applied Mathematics, Vol. 271. Chapman 8 Hall/CRC.Google ScholarGoogle Scholar
  51. Matthew Richardson and Pedro Domingos. 2006. Markov logic networks. Machine Learn. 62, 1--2 (2006), 107--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Hartley Rogers, Jr. 1987. Theory of Recursive Functions and Effective Computability (2nd ed.). MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Daniel M. Roy. 2011. Computability, Inference and Modeling in Probabilistic Programming. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mark J. Schervish. 1995. Theory of Statistics. Springer-Verlag, New York.Google ScholarGoogle Scholar
  55. Matthias Schröder. 2007. Admissible representations for probability measures. Math. Log. Q. 53, 4--5 (2007), 431--445.Google ScholarGoogle ScholarCross RefCross Ref
  56. R. J. Solomonoff. 1964. A formal theory of inductive inference II. Inform. and Control 7 (1964), 224--254.Google ScholarGoogle ScholarCross RefCross Ref
  57. Hayato Takahashi. 2008. On a definition of random sequences with respect to conditional probability. Inform. and Comput. 206, 12 (2008), 1375--1382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tue Tjur. 1974. Conditional Probability Distributions. Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, Denmark.Google ScholarGoogle Scholar
  59. Tue Tjur. 1975. A Constructive Definition of Conditional Distributions. Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, Denmark.Google ScholarGoogle Scholar
  60. Tue Tjur. 1980. Probability Based on Radon Measures. John Wiley 8 Sons Ltd., Chichester, UK.Google ScholarGoogle Scholar
  61. Klaus Weihrauch. 1993. Computability on computable metric spaces. Theoret. Comput. Sci. 113, 2 (1993), 191--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Klaus Weihrauch. 1999. Computability on the probability measures on the Borel sets of the unit interval. Theoret. Comput. Sci. 219, 1--2 (1999), 421--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Klaus Weihrauch. 2000. Computable Analysis: An Introduction. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Tomoyuki Yamakami. 1999. Polynomial time samplable distributions. J. Complexity 15, 4 (1999), 557--574. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. A. K. Zvonkin and L. A. Levin. 1970. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Uspekhi Mat. Nauk 25, 6 (156) (1970), 85--127.Google ScholarGoogle Scholar

Index Terms

  1. On the Computability of Conditional Probability

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 66, Issue 3
        June 2019
        221 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/3324923
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 June 2019
        • Accepted: 1 March 2019
        • Revised: 1 July 2017
        • Received: 1 December 2011
        Published in jacm Volume 66, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format