skip to main content
10.1145/332306.332319acmconferencesArticle/Chapter ViewAbstractPublication PagesrecombConference Proceedingsconference-collections
Article
Free Access

A combinatorial approach to protein docking with flexible side-chains

Authors Info & Claims
Published:08 April 2000Publication History

ABSTRACT

Rigid body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side—chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side—chains while keeping the protein backbone rigid. Starting from candidates created by a rigid docking algorithm, we demangle the side—chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side—chain demangling. Both approaches are based on a discrete representation of the side—chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem we propose a fast heuristic approach and an exact, albeit slower method using branch—&—cut techniques. As a test set we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples the highest—ranking conformation produced was a good approximation of the true complex structure.

References

  1. 1.R Abagyan and M. Totrov. Biased probability Monte Carlo conformatlonal searches and electrostatic calculations for pept~des and proteins. J. Mol. Bsol., 235:983- 1002, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. 2.F Ackermann, G. Herrmann, F Kummert, S. Posch, G. Sagerer, and D. Schomburg Protein docking combining symbolic descriptions of molecular surfaces and gridbased scoring functions. In Proceedings of the Third International Conference on Intelhgent Systems m Molecular Bzology, pages 3-11, Menlo Park, California, 1995. AAAI Press.]]Google ScholarGoogle Scholar
  3. 3.E. Althaus, O. Kohlbacher, H.-P. Lenhof, and P. Mfiller. A branch-&-cut algorithm for the optimal solution of the side-chain placement problem. Techmcal Report MPI-I-2000-1-001, Max-Planck-Institut fiir Informatik, Saarbrficken, Jan. 2000]]Google ScholarGoogle Scholar
  4. 4.D. J. Bacon and J. Moult. Docking by least-squares fitting of molecular surface patterns. J. Mol. B~ol., 225:849-858, 1992.]]Google ScholarGoogle ScholarCross RefCross Ref
  5. 5.F Bernstein, T Koetzle, G. Wfiliams, E. Meyer Jr, M. Brice, J. Rodgers, O Kennard, T. Shimanouchi, and M. Tasumi. The prote~n data bank: a computerbased archival file for macromolecular structures. J. Mol. Bwl., 112.535, 1977]]Google ScholarGoogle Scholar
  6. 6.N. Boghossian, O. Kohlbacher, and H-P. Lenhof. BALL: Biochemical Algorithms Library. In J Vitter and C. Zaroliagls, editors, Algorithm Engineermg, 3rd Internatmnal Workshop, WAE'99, Proceedings, volume 1668 of Lecture Notes m Computer Science (LNCS), pages 330-344. Springer, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. 7.R. E. Bruccoleri and J. Novotny. Antibody modehng using the conformational search program CONGEN Immunomethods, 1:96-1{16, 1992.]]Google ScholarGoogle Scholar
  8. 8.J. Cherfils, S. Duquerroy, and J. 3amn. Protein-protein recogmtion analysis by docking simulation Proteins, 11.271-280, 1991]]Google ScholarGoogle Scholar
  9. 9.M L. Connolly. Shape complementarity at the hemoglobin alfil subumt interface. Btopolymers, 25:1229-1247, 1986.]]Google ScholarGoogle ScholarCross RefCross Ref
  10. 10.W D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M Ferguson, D. C. Spellmeyer, T Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc., 117:5179-5197, 1995.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. 11.J. Desmet, M. D. Maeyer, B Hazes, and I. Lasters. The dead-end ehminatJon theorem and its use in the protein rode-chain positioning. Nature, 356:539-542, April 1992.]]Google ScholarGoogle ScholarCross RefCross Ref
  12. 12.R L. Dunbrack and F E. Cohen. Bayesian statistical analysis of protein s~de-cham retainer preferences. Protern Science, 6'1661-1681, 1997]]Google ScholarGoogle Scholar
  13. 13.D. Fmcher, S L Lin, H J Wolfson, and R Nuss~nov A geometry-based suite of molecular docking processes J. Mol. Bzol., 248'459-477, 1995.]]Google ScholarGoogle Scholar
  14. 14.M. Helmer-Citterich and A. Tramontano. PUZZLE: a new method for automated protein docking based on surface shape complementarity. J. Mol. Biol., 235.1021- 1031, 1994.]]Google ScholarGoogle Scholar
  15. 15.L. Holm and C. Sander. Fast and simple monte carlo algorithm for side-chain optimization in proteins: application to model building by homology. Proteins, 14.213- 223, 1992.]]Google ScholarGoogle Scholar
  16. 16.ILOG. ILOG CPLEX 6.5: user's manual. ILOG, Bad Homburg, march 1999 edition, 1999.]]Google ScholarGoogle Scholar
  17. 17.R. M. Jackson, H. A Gabb, and M. J. E. Sternberg Rapid refinement of protein interfaces incorporating sok vation: Application to the protein docking problem d. Mol. B, ol., 276.265-285, 1998.]]Google ScholarGoogle Scholar
  18. 18.R. M. Jackson and M. J. E. Sternberg. A continuum model for protein-protein interactions: Applicatmn to the protein docking problem. J. Mol. Biol., 25(!:258- 275, 1995.]]Google ScholarGoogle Scholar
  19. 19.F. Jiang and S. H, Kim. Soft docking: matching of molecular surface cubes Y. Mol. Bsol., 219 79-102, 1991.]]Google ScholarGoogle ScholarCross RefCross Ref
  20. 20.M. Jiinger and S Thienel. introduction to ABACUS - A branch-and-CUt system. Technical report, Informat~k, Universit~it zu KSln, 1997.]]Google ScholarGoogle Scholar
  21. 21.E. Katchalski-Katzir, I Shariv, M. Eisenstein, A A Friesem, C. Afalo, and I. A. Vakser. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Prec. Natl. Acid. Sci. USA~ 89:2195-2199, 1992]]Google ScholarGoogle ScholarCross RefCross Ref
  22. 22.P. Koehl and M. Delarue. Application of a selfconsistent mean field theory to predict prote~n sidechains conformation and estimate their conformational entropy. J. Mol. Biol, 239:249-275, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. 23.O. Kohlbacher and H.-P. Lenhof Rapid software prototyping tn computational molecular biology. In Proce~dmgs of the German Conference on B~oinformat~cs (GCB'99), 1999.]]Google ScholarGoogle Scholar
  24. 24.C. A. Laughton. Predlction of protein side-chain conformations from local three-dimensional homology relationships. S. Mol. B~of., 235:1fi88~1097, 1994.]]Google ScholarGoogle Scholar
  25. 25.A. R. Leach Ligand docking to proteins w~th discrete side-chain flexibfiity. J. }Viol. BioL, 235:345-356, 1994.]]Google ScholarGoogle Scholar
  26. 26.A R. Leach and A P. Lemon. Exploring the confermatlonal space of protein side chains using dead-end ehmmation and the a* algorithm. Proteins: Struct., Fhnctzon, and Genet., 33:227-239, 1998.]]Google ScholarGoogle Scholar
  27. 27.H-P. Lenhof An algorithm for the protein docking problem. In D. Schomburg and U. Lessel, editors, BzomJormat~cs: From nucle,c acids and proteins to cell metabohsm. GBF Monographs Volume 18, pages 125- 139, 1995.]]Google ScholarGoogle Scholar
  28. 28.H.-P Lenhof. New contact measores for the protein docking problem. In Proc. of the F, rst Ann~al Internatwnal Conference on Computational Molecular Bwlogy RECOMB 97, pages 182-191, 1.997.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. 29.K Mehlhorn, S. Naher, M Seel, and C. Uhrig The LEDA user manual.' version 3.8. Max-Planck-lnstitut fiJr {nformatlk, Saarbriicken, 1999]]Google ScholarGoogle Scholar
  30. 30.M. Meyer, P Wilson, and D. Schomburg. Hydrogen bonding and molecular surface shape complementarity a~s a basts for protein docking. J. Mol. Biol., 264(1) 199- 210, 1996.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. 31.J. Moon and W. Howe Computer design of bioactlve molecules A method for receptor-based de nov<) hgand design Proteins; Struct Funct. Genetics, 11 314-328, 1991]]Google ScholarGoogle ScholarCross RefCross Ref
  32. 32.R. Norel, S. L. Lin, D. Xu, H. J. Wolfson, and R Nussinov Molecular surface variability and induced conformational changes upon protein-protein association In R H. Sarma and M. H. Saxma, editors, Structure, Motion, lnterac~mon and Expresswn of Biological Macromolecules. Proceedings of the Tenth Conversatwn. State Unzversity of New York, pages 33-51. Adenine Press, 1998.]]Google ScholarGoogle Scholar
  33. 33.J. Ponder and F. Richards. Tertiary templates for proterns - use of packing criteria in the enumeration of allowed sequences for different structural classes J. Mol. B~ol., 193.775-791, 1987.]]Google ScholarGoogle Scholar
  34. 34.M. Rarey, B. Kramer, T. Lengauer, and G. K!ebe. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 261:470-489~ 1997.]]Google ScholarGoogle ScholarCross RefCross Ref
  35. 35.B. K Shomhet and I. D. Kuntz. Protein docking and complementarity. J. Mot. Biol., 221:79-102, 1991.]]Google ScholarGoogle Scholar
  36. 36.D Sitkoff, K A. Sharp, and B. Honig. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 98(7):1978-1988, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  37. 37.M Totrov and R. Abagyan. Detailed ab initio prediction of lysozyme-antlbody complex with 1.6 ~ accuracy. Nat. Struct. Bsol., 1:259-263, 1994.]]Google ScholarGoogle ScholarCross RefCross Ref
  38. 38.P. H. I Walls and M. J. E. Sternberg. New algorithm to model protein-protein recognition based on surface complementarity. J. Mo/. Biol., 228:277-297, 1992.]]Google ScholarGoogle Scholar
  39. 39.Z. Weng, S Vajda, and C. Delisi. Prediction of protein complexes using empirical free energy functions. Protein Scsence, 5'614-626, 1996.]]Google ScholarGoogle Scholar
  40. 40.L A. Wolsey. Integer programming. Wiley-interscience serms m discrete mathematics and optimization. Wiley g~ Sons, New York, 1998.]]Google ScholarGoogle Scholar
  41. 41.R. Wunderling. Paralleler und Objektortentierter Simplex-A!gorithmus. Technical report, Konrad-Zuse- Zentrum fiir Informationstechnik Berlin, 1997.]]Google ScholarGoogle Scholar
  1. A combinatorial approach to protein docking with flexible side-chains

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      RECOMB '00: Proceedings of the fourth annual international conference on Computational molecular biology
      April 2000
      329 pages
      ISBN:1581131860
      DOI:10.1145/332306

      Copyright © 2000 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 April 2000

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate148of538submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader