skip to main content
10.1145/3331184.3331207acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Accelerated Query Processing Via Similarity Score Prediction

Published:18 July 2019Publication History

ABSTRACT

Processing top-k bag-of-words queries is critical to many information retrieval applications, including web-scale search. In this work, we consider algorithmic properties associated with dynamic pruning mechanisms. Such algorithms maintain a score threshold (the k th highest similarity score identified so far) so that low-scoring documents can be bypassed, allowing fast top-k retrieval with no loss in effectiveness. In standard pruning algorithms the score threshold is initialized to the lowest possible value. To accelerate processing, we make use of term- and query-dependent features to predict the final value of that threshold, and then employ the predicted value right from the commencement of processing. Because of the asymmetry associated with prediction errors (if the estimated threshold is too high the query will need to be re-executed in order to assure the correct answer), the prediction process must be risk-sensitive. We explore techniques for balancing those factors, and provide detailed experimental results that show the practical usefulness of the new approach.

References

  1. D. Beck, L. Specia, and T. Cohn. Exploring prediction uncertainty in machine translation quality estimation. In Proc. CoNLL, pages 208--218, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using a two-level retrieval process. In Proc. CIKM, pages 426--434, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Burges. From RankNet to LambdaRank to LambdaMart: An overview. Learning, 11 (23--581): 81, 2010.Google ScholarGoogle Scholar
  4. B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. Early exit optimizations for additive machine learned ranking systems. In Proc. WSDM, pages 411--420, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval. In Proc. SIGIR, pages 445--454, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. F. Christoffersen and F. X. Diebold. Optimal prediction under asymmetric loss. Econometric Theory, 13 (06): 808--817, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  7. C. L. A. Clarke, J. S. Culpepper, and A. Moffat. Assessing efficiency-effectiveness tradeoffs in multi-stage retrieval systems without using relevance judgments. Inf. Retr., 19 (4): 351--377, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Craswell, R. Jones, G. Dupret, and E. Viegas, editors. Proc. 2009 Workshop on Web Search Click Data: WSCD@WSDM. ACM, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  9. J. S. Culpepper, C. L. A. Clarke, and J. Lin. Dynamic cutoff prediction in multi-stage retrieval systems. In Proc. Aust. Doc. Comp. Symp., pages 17--24, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning with quantile regression. In Proc. AAAI, pages 2892--2901, 2018.Google ScholarGoogle Scholar
  11. C. M. Daoud, E. S. de Moura, D. Fernandes, A. S. da Silva, C. Rossi, and A. Carvalho. Waves: A fast multi-tier top-k query processing algorithm. Inf. Retr., 20 (3): 292--316, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Fast ranking with additive ensembles of oblivious and non-oblivious regression trees. ACM Trans. Inf. Sys., 35 (2): 15.1--15.31, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. L. S. de Carvalho, E. S. de Moura, C. M. Daoud, and A. S. da Silva. Heuristics to improve the BMW method and its variants. J. Data Inf. Qual., 6: 178--191, 2015.Google ScholarGoogle Scholar
  14. L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Compressing graphs and indexes with recursive graph bisection. In Proc. KDD, pages 1535--1544, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k document retrieval strategies for block-max indexes. In Proc. WSDM, pages 113--122, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In Proc. SIGIR, pages 993--1002, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation strategies for top-k queries over memory-resident inverted indexes. Proc. VLDB, 4 (12): 1213--1224, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29 (5): 1189--1232, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proc. ICML, pages 1050--1059, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Y. He, J. Tang, H. Ouyang, C. Kang, D. Yin, and Y. Chang. Learning to rewrite queries. In Proc. CIKM, pages 1443--1452, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc. UAI, pages 282--290, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35 (1): 73--101, 1964.Google ScholarGoogle ScholarCross RefCross Ref
  23. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, pages 448--456, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score computation. In Proc. SIGIR, pages 629--638, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Kane and F. W. Tompa. Split-lists and initial thresholds for WAND-based search. In Proc. SIGIR, pages 877--880, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Does selective search benefit from WAND optimization? In Proc. ECIR, pages 145--158, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. ICLR, pages 1--15, 2015.Google ScholarGoogle Scholar
  28. T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In Proc. SIGMOD, pages 489--504, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep learning. In Proc. NeurIPS, pages 3288--3298, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Quickscorer: A fast algorithm to rank documents with additive ensembles of regression trees. In Proc. SIGIR, pages 73--82, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Exploiting CPU SIMD extensions to speed-up document scoring with tree ensembles. In Proc. SIGIR, pages 833--836, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending dropout and pruning for efficient learning to rank. In Proc. SIGIR, pages 1077--1080, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Macdonald, N. Tonellotto, and I. Ounis. Efficient and effective selective query rewriting with efficiency predictions. In Proc. SIGIR, pages 495--504, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4 (3): 415--447, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin. Query driven algorithm selection in early stage retrieval. In Proc. SIGIR, pages 396--404, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel. Compressing inverted indexes with recursive graph bisection: A reproducibility study. In Proc. ECIR, pages 339--352, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Mallia and E. Porciani. Faster BlockMax WAND with longer skipping. In Proc. ECIR, pages 771--778, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster BlockMax WAND with variable-sized blocks. In Proc. SIGIR, pages 625--634, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Mallia, M. Siedlaczek, and T. Suel. An experimental study of index compression and DAAT query processing methods. In Proc. ECIR, pages 353--368, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k aggregation of ranked inputs. ACM Trans. Data. Sys., 32 (3): 19, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Mitra and N. Craswell. An introduction to neural information retrieval. Found. Trnd. Inf. Retr., 13 (1): 1--126, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  42. K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In Proc. SIGIR, pages 273--282, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Peter, F. Diego, F. A. Hamprecht, and B. Nadler. Cost efficient gradient boosting. In Proc. NeurIPS, pages 1550--1560, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proc. Aust. Doc. Comp. Symp., pages 58--65, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15: 1929--1958, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. T. Strohman, H. R. Turtle, and W. B. Croft. Optimization strategies for complex queries. In Proc. SIGIR, pages 219--225, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic guarantees. In Proc. VLDB, pages 648--659, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and effective retrieval using selective pruning. In Proc. WSDM, pages 63--72, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf. Proc. & Man., 31 (6): 831--850, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. H. Varian. A Bayesian approach to real estate assessment. In S. E. Fienberg and A. Zellner, editors, Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, pages 195--208. 1975.Google ScholarGoogle Scholar
  53. L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proc. SIGIR, pages 105--114, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. H. Wu and H. Fang. Document prioritization for scalable query processing. In Proc. CIKM, pages 1609--1618, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and trees for minimizing feature evaluation cost. J. Mach. Learn. Res., 15: 2113--2144, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D. Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng, C. Nobata, J.-M. Langlois, and Y. Chang. Ranking relevance in Yahoo search. In Proc. KDD, pages 323--332, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. H. Zamani, M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps. From neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In Proc. CIKM, pages 497-506, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Accelerated Query Processing Via Similarity Score Prediction

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGIR'19: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
      July 2019
      1512 pages
      ISBN:9781450361729
      DOI:10.1145/3331184

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 July 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SIGIR'19 Paper Acceptance Rate84of426submissions,20%Overall Acceptance Rate792of3,983submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader