skip to main content
research-article

Urban Human Mobility: Data-Driven Modeling and Prediction

Published:13 May 2019Publication History
Skip Abstract Section

Abstract

Human mobility is a multidisciplinary field of physics and computer science and has drawn a lot of attentions in recent years. Some representative models and prediction approaches have been proposed for modeling and predicting human mobility. However, multi-source heterogeneous data from handheld terminals, GPS, and social media, provides a new driving force for exploring urban human mobility patterns from a quantitative and microscopic perspective. The studies of human mobility modeling and prediction play a vital role in a series of applications such as urban planning, epidemic control, location-based services, and intelligent transportation management. In this survey, we review human mobility models based on a human-centric angle in a datadriven context. Specifically, we characterize human mobility patterns from individual, collective, and hybrid levels. Meanwhile, we survey human mobility prediction methods from four aspects and then describe recent development respectively. Finally, we discuss some open issues that provide a helpful reference for researchers' future direction. This review not only lays a solid foundation for beginners who want to acquire a quick understanding of human mobility but also provides helpful information for researchers on how to develop a unified human mobility model.

References

  1. O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in moving objects databases. In IEEE International Conference on Data Engineering, pages 376--385, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. R. Alam, M. B. I. Reaz, and M. A. M. Ali. Speed: An inhabitant activity prediction algorithm for smart homes. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(4):985-- 990, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Alessandretti, P. Sapiezynski, S. Lehmann, and A. Baronchelli. Multi-scale spatio-temporal analysis of human mobility. Plos One, 12(2):e0171686, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Alessandretti, P. Sapiezynski, V. Sekara, S. Lehmann, and A. Baronchelli. Evidence for a conserved quantity in human mobility. Nature Human Behaviour, 2:485--491.Google ScholarGoogle ScholarCross RefCross Ref
  5. J. E. Anderson. The gravity model. Nber Working Papers, 19(3):979--981, 2011.Google ScholarGoogle Scholar
  6. N. Aschenbruck, A. Munjal, and T. Camp. Tracebased mobility modeling for multi-hop wireless networks. Computer Communications, 34(6):704--714, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Atzori, M. Atzori, and Y. Saygin. Towards trajectory anonymization: a generalization-based approach. In Sigspatial ACM Gis 2008 International Workshop on Security and Privacy in Gis and Lbs, pages 52--61, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Balcan, V. Colizza, B. Gon´alves, H. Hu, J. Ramasco, and A. Vespignani. Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America, 106(51):21484--21489, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Balcan and A. Vespignani. Phase transitions in contagion processes mediated by recurrent mobility patterns. Nature Physics, 7(7):581--586, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, F. Simini, and M. Tomasini. Human mobility: Models and applications. Physics Reports, 734:1 -- 74, 2018.Google ScholarGoogle Scholar
  11. G. Barlacchi, M. D. Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. Antonelli, A. Vespignani, A. Pentland, and B. Lepri. A multi-source dataset of urban life in the city of milan and the province of trentino. Scientific Data, 2:150055, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Barth´elemy. Spatial networks. Physics Reports, 499(1):1--101, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Baumann, C. Koehler, A. Dey, and S. Santini. Selecting individual and population models for predicting human mobility. IEEE Transactions on Mobile Computing, 17(10):2408--2422, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Bhattacharya and S. K. Das. Lezi-update: an information-theoretic approach to track mobile users in pcs networks. pages 1--12, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. I. Blanford, Z. Huang, A. Savelyev, and A. M. Maceachren. Geo-located tweets. enhancing mobility maps and capturing cross-border movement. Plos One, 10(6):e0129202, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  16. P. Bonacich. Some unique properties of eigenvector centrality. Social Networks, 29(4):555--564, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Box and G. M. Jenkins. Box and Jenkins: Time Series Analysis, Forecasting and Control, pages 161-- 215. Palgrave Macmillan UK, Basingstoke, Hampshire, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel. Nature, 439(7075):462--465, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  19. F. Calabrese, M. Diao, G. Di Lorenzo, J. Ferreira, and C. Ratti. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation research part C: emerging technologies, 26:301--313, 2013.Google ScholarGoogle Scholar
  20. F. Calabrese, L. Ferrari, and V. D. Blondel. Urban sensing using mobile phone network data: a survey of research. Acm computing surveys (csur), 47(2):25, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. B. S. Chen. Modeling destination choice in hurricane evacuation with an intervening opportunity model. Surface & Coatings Technology, 213(12):48--58, 2005.Google ScholarGoogle Scholar
  22. D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, and J. Kleinberg. Inferring social ties from geographic coincidences. Proceedings of the National Academy of Sciences, 107(52):22436--22441, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  23. B. C. Cs´aji, A. Browet, V. A. Traag, J. C. Delvenne, E. Huens, P. Van Dooren, Z. Smoreda, and V. D. Blondel. Exploring the mobility of mobile phone users. Physica A: Statistical Mechanics and its Applications, 392(6):1459--1473, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Cuttone, S. Lehmann, and M. C. Gonz´alez. Understanding predictability and exploration in human mobility. Epj Data Science, 7(1):2, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  25. E. M. Daly and M. Haahr. Social network analysis for information flow in disconnected delay-tolerant manets. IEEE Transactions on Mobile Computing, 8(5):606--621, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. F. N. David. Hypothesis-testing in time series analysis. Biometrika, 39(265):300--325, 1952.Google ScholarGoogle Scholar
  27. M. De Domenico, A. Lima, and M. Musolesi. Interdependence and predictability of human mobility and social interactions. Pervasive & Mobile Computing, 9(6):798--807, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Deville, C. Song, N. Eagle, V. D. Blondel, A. L. Barab´asi, and D. Wang. Scaling identity connects human mobility and social interactions. Proceedings of the National Academy of Sciences, 113(26):7047--7052, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. D. Domenico, A. Lima, M. C. Gonz´alez, and A. Arenas. Personalized routing for multitudes in smart cities. Epj Data Science, 4(1):1, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. L. Doob. The brownian movement and stochastic equations. Annals of Mathematics, 43(2):351--369, 1942.Google ScholarGoogle ScholarCross RefCross Ref
  31. B. Du, C. Liu, W. Zhou, Z. Hou, and H. Xiong. Catch me if you can: Detecting pickpocket suspects from large-scale transit records. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 87--96, San Francisco, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Einstein. Investigations on the theory of the brownian movement. 7(10):281, 1956.Google ScholarGoogle Scholar
  33. S. Eubank, H. Guclu, V. S. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988):180--184, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  34. J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin. Deepmove: Predicting human mobility with attentional recurrent networks. In In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pages 1459--1468, Lyon, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. R. Feynman. The brownian movement. The Feynman Lectures of Physics, 1:41--1, 1964.Google ScholarGoogle Scholar
  36. R. Flowerdew and M. Aitkin. A method of fitting the gravity model based on the poisson distribution. J Reg Sci, 22(2):191--202, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  37. L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35--41, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  38. L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1(3):215--239, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  39. G. Gidofalvi, X. Huang, and T. B. Pedersen. Privacypreserving data mining on moving object trajectories. In International Conference on Mobile Data Management, pages 60--68, Mannheim, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. C. Gonzalez, C. A. Hidalgo, and A. L. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779--782, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  41. K. Gopalratnam and D. J. Cook. Online sequential prediction via incremental parsing: The active lezi algorithm. IEEE Intelligent Systems, 22(1):52--58, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. X. P. Han, Q. Hao, B. H. Wang, and T. Zhou. Origin of the scaling law in human mobility: hierarchy of traffic systems. Physical Review E Statistical Nonlinear & Soft Matter Physics, 83(2):036117, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  43. A. Hess, K. A. Hummel, and W. N. Gansterer. Datadriven human mobility modeling:a survey and engineering guidance for mobile networking. Acm Computing Surveys, 48(3):1--39, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou. Detecting urban black holes based on human mobility data. In Sigspatial International Conference on Advances in Geographic Information Systems, page 35, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Horak. Telecommunications and Data Communications Handbook. Wiley-Interscience, New Jersey, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. H. Hsieh, S. Lin, and Y. Zheng. Inferring air quality for station location recommendation based on urban big data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 437--446, Sydney, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. H. Hsieh, R. Yan, and C. T. Li. Where you go reveals who you know: Analyzing social ties from millions of footprints. In ACM International on Conference on Information and Knowledge Management, pages 1839--1842, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. M. Itoh, D. Yokoyama, M. Toyoda, Y. Tomita, S. Kawamura, and M. Kitsuregawa. Visual exploration of changes in passenger flows and tweets on megacity metro network. IEEE Transactions on Big Data, 2(1):85--99, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  49. B. Jedari, F. Xia, and Z. Ning. A survey on humancentric communications in non-cooperative wireless relay networks. IEEE Communications Surveys & Tutorials, pages 1--9, 2018.Google ScholarGoogle Scholar
  50. J. S. Jia, J. Jia, C. K. Hsee, and B. Shiv. The role of hedonic behavior in reducing perceived risk: Evidence from postearthquake mobile-app data. Psychological Science, 28(1):23--35, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  51. B. Jiang, J. Yin, and S. Zhao. Characterizing the human mobility pattern in a large street network. Physical Review E Statistical Nonlinear and Soft Matter Physics, 80(2 Pt 1):021136, 2009.Google ScholarGoogle Scholar
  52. S. Jiang, J. Ferreira, and M. C. Gonzalez. Activitybased human mobility patterns inferred from mobile phone data: A case study of singapore. IEEE Transactions on Big Data, 3(2):208--219, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  53. J. Joseph, F. Doshi-Velez, and N. Roy. A bayesian nonparametric approach to modeling mobility patterns. In Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1587--1593, Atlanta, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. W. S. Jung. Gravity model in the korean highway. 81(4):48005, 2008. {55} J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845, 2000.Google ScholarGoogle Scholar
  55. X. Kong, M. Li, J. Li, K. Tian, X. Hu, and F. Xia. Copfun: an urban co-occurrence pattern mining scheme based on regional function discovery. World Wide Web, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. X. Kong, X. Song, F. Xia, H. Guo, J. Wang, and A. Tolba. Lotad: long-term traffic anomaly detection based on crowdsourced bus trajectory data. World Wide Web, 21(3):825--847, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. X. Kong, F. Xia, Z. Ning, A. Rahim, Y. Cai, Z. Gao, and J. Ma. Mobility dataset generation for vehicular social networks based on floating car data. IEEE Transactions on Vehicular Technology, 67(5):3874-- 3886, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  58. X. Kong, F. Xia, J. Wang, A. Rahim, and S. K. Das. Time-location-relationship combined service recommendation based on taxi trajectory data. IEEE Transactions on Industrial Informatics, 13(3):1202-- 1212, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  59. X. Kong, Z. Xu, G. Shen, J. Wang, Q. Yang, and B. Zhang. Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Generation Computer Systems, 61:97--107, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. G. Krings, F. Calabrese, C. Ratti, and V. D. Blondel. Urban gravity: a model for intercity telecommunication flows. Journal of Statistical Mechanics Theory and Experiment, 2009(7):L07003, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  61. M. K. Le, A. Bhaskar, and E. Chung. Passenger segmentation using smart card data. IEEE Transactions on Intelligent Transportation Systems, 16(3):1537-- 1548, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  62. W. C. Lee, J. Krumm, K. Deng, K. Xie, K. Zheng, X. Zhou, G. Trajcevski, C. Y. Chow, M. F. Mokbel, and H. Jeung. Computing with spatial trajectories. Computing with Spatial Trajectories, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. M. Lenormand, A. Bassolas, and J. J. Ramasco. Systematic comparison of trip distribution laws and models. Journal of Transport Geography, 51:158--169, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  64. Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W. Y. Ma. Mining user similarity based on location history. In ACM Sigspatial International Conference on Advances in Geographic Information Systems, page 34. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. X. Liang, J. Zhao, D. Li, and K. Xu. Unraveling the origin of exponential law in intra-urban human mobility. Scientific Reports, 3(10):65--65, 2013.Google ScholarGoogle Scholar
  66. X. Lu, L. Bengtsson, and P. Holme. Predictability of population displacement after the 2010 haiti earthquake. Proceedings of the National Academy of Sciences of the United States of America, 109(29):11576-- 11581, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  67. M. K. E. Mahrsi, E. Come, L. Oukhellou, and M. Verleysen. Clustering smart card data for urban mobility analysis. IEEE Transactions on Intelligent Transportation Systems, 18(3):712--728, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. A. P. Masucci, J. Serras, A. Johansson, and M. Batty. Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows. Physical Review E Statistical Nonlinear & Soft Matter Physics, 88(2):022812, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  69. L. Matyas. Proper econometric specification of the gravity model. World Economy, 20(3):363--368, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  70. A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: A location predictor on trajectory pattern mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 637--646, New York, 2009. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. E. W. Montroll. Random walks on lattices. In II J. Math. Phys, pages 193--220, 1969.Google ScholarGoogle Scholar
  72. M. E. J. Newman. Networks: an introduction. Oxford University Press, Inc., Oxford, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. M. Ni, Q. He, and J. Gao. Forecasting the subway passenger flow under event occurrences with social media. IEEE Transactions on Intelligent Transportation Systems, 18(6):1623--1632, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Z. Ning, F. Xia, N. Ullah, X. Kong, and X. Hu. Vehicular social networks: Enabling smart mobility. IEEE Communications Magazine, 55(5):16--55, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo. A tale of many cities: universal patterns in human urban mobility. Plos One, 7(9):e37027, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  76. J. D. D. Ort´uzar and L. G. Willumsen. Modeling transport. Transactions of the Institute of British Geographers, 18(1), 2011.Google ScholarGoogle Scholar
  77. K. Ouyang, R. Shokri, D. S. Rosenblum, andW. Yang. A non-parametric generative model for human trajectories. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages 3812--3817, Stockholm, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. V. Palchykov, M. Mitrovi´c, H. H. Jo, J. Saram¨aki, and R. K. Pan. Inferring human mobility using communication patterns. Sci Rep, 4:6174, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  79. J. R. B. Palmer, T. J. Espenshade, F. Bartumeus, Y. C. Chang, N. E. Ozgencil, and K. Li. New approaches to human mobility: Using mobile phones for demographic research. Demography, 50(3):1105--1128, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  80. K. Pearson. The problem of the random walk. Nature, 72:342, 1905.Google ScholarGoogle ScholarCross RefCross Ref
  81. K. Peterson. Business telecom systems: A guide to choosing the best technologies and services. Crc Press, page 412, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. H. Pham, C. Shahabi, and Y. Liu. Ebm: an entropybased model to infer social strength from spatiotemporal data. In ACM SIGMOD International Conference on Management of Data, pages 265--276, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. C. Potter. New questions in the 1940 census. Prologue- Quarterly of the National Archives and Records Administration, 42(4):46--52, 2010.Google ScholarGoogle Scholar
  84. S. K. Pulliyakode and S. Kalyani. A modified ppm algorithm for online sequence prediction using short data records. Communications Letters IEEE, 19(3):423-- 426, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  85. S. Qiao, D. Shen, X. Wang, N. Han, and W. Zhu. A self-adaptive parameter selection trajectory prediction approach via hidden markov models. IEEE Transactions on Intelligent Transportation Systems, 16(1):284--296, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Y. Qiao, Z. Si, Y. Zhang, F. B. Abdesslem, X. Zhang, J. Yang, Y. Qiao, Z. Si, Y. Zhang, and F. B. Abdesslem. A hybrid markov-based model for human mobility prediction. Neurocomputing, 278:99--109, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  87. A. Rahim, T. Qiu, Z. Ning, J. Wang, N. Ullah, A. Tolba, and F. Xia. Social acquaintance based routing in vehicular social networks. Future Generation Computer Systems, 2017.Google ScholarGoogle Scholar
  88. Y. Ren, M. Ercseyravasz, P. Wang, M. C. Gonz´alez, and Z. Toroczkai. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges. Nature Communications, 5(5):5347, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  89. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong. On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 19(3):630-- 643, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. E. R. Ruiter. Toward a better understanding of the intervening opportunities model. Transportation Research, 1(1):47--56, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  91. A. Rutherford, M. Cebrian, S. Dsouza, E. Moro, A. Pentland, and I. Rahwan. Limits of social mobilization. Proceedings of the National Academy of Sciences of the United States of America, 110(16):6281--6, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  92. S. Scellato, A. Noulas, and R. Lambiotte. Socio-spatial properties of online location-based social networks. Proceedings of Icwsm, page 2011, 2012.Google ScholarGoogle Scholar
  93. F. Simini, M. C. Gonz´alez, A. Maritan, and A. L. Barab´asi. A universal model for mobility and migration patterns. Nature, 484(7392):96--100, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  94. F. Simini and A. Maritan. Human mobility in a continuum approach. Plos One, 8(3):e60069, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  95. C. Song, T. Koren, P.Wang, and A. L. Barab´asi. Modelling the scaling properties of human mobility. Nature Physics, 6(10):818--823, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  96. C. Song, Z. Qu, N. Blumm, and A. L. Barab´asi. Limits of predictability in human mobility. Science, 327(5968):1018--1021, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  97. L. Song, D. Kotz, R. Jain, and X. He. Evaluating next-cell predictors with extensive wi-fi mobility data. IEEE Transactions on Mobile Computing, 5(12):1633-- 1649, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. X. Song, H. Kanasugi, and R. Shibasaki. Deeptransport: prediction and simulation of human mobility and transportation mode at a citywide level. In International Joint Conference on Artificial Intelligence, pages 2618--2624, New York, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. X. Song, H. Kanasugi, and R. Shibasaki. Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, pages 2618--2624, New York, 2016. International Joint Conferences on Artificial Intelligence Organization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. J. Yuan, and X. Xie. Prediction and simulation of human mobility following natural disasters. ACM Trans. Intell. Syst. Technol., 8(2):29:1--29:23, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. S. A. Stouffer. Intervening opportunities: A theory relating mobility and distance. American Sociological Review, 5(6):845--867, 1940.Google ScholarGoogle ScholarCross RefCross Ref
  102. L. Sun and K. W. Axhausen. Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transportation Research Part B: Methodological, 91:511--524, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  103. L. Sun, K. W. Axhausen, D.-H. Lee, and X. Huang. Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110(34):13774--13779, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  104. F. Terroso-S´aenz, J. Cuenca-Jara, A. Gonz´alez-Vidal, and A. F. Skarmeta. Human mobility prediction based on social media with complex event processing. International Journal of Distributed Sensor Networks, 12(9):5836392--5836392, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  105. M. Terrovitis and N. Mamoulis. Privacy preservation in the publication of trajectories. In International Conference on Mobile Data Management, pages 65--72, Peking, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. M. Tizzoni, P. Bajardi, A. Decuyper, K. K. G. Kon, C. M. Schneider, V. Blondel, Z. Smoreda, M. C. Gonz´alez, and V. Colizza. On the use of human mobility proxies for modeling epidemics. Plos Computational Biology, 10(7):e1003716, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  107. E. Toch, B. Lerner, E. Ben-Zion, and I. Ben- Gal. Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowledge and Information Systems, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. H. Tong, T. K. Kumar, and Y. Huang. Stationary Time Series Models. Wiley-Blackwell, New Jersey, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  109. J. Treurniet. A taxonomy and survey of microscopic mobility models from the mobile networking domain. Acm Computing Surveys, 47(1):1--32, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. M. Veloso, S. Phithakkitnukoon, C. Bento, N. Fonseca, and P. Olivier. Exploratory study of urban flow using taxi traces. In First Workshop on Pervasive Urban Applications (PURBA), pages 241--248. Pervasive Computing, 2011.Google ScholarGoogle Scholar
  111. G. Walker. On periodicity in series of related terms. Proceedings of the Royal Society of London, 131(818):518--532, 1931.Google ScholarGoogle ScholarCross RefCross Ref
  112. J. Wang, X. Kong, A. Rahim, F. Xia, A. Tolba, and Z. Al-Makhadmeh. Is2fun: Identification of subway station functions using massive urban data. IEEE Access, 5:27103--27113, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  113. W. Wang, L. Pan, N. Yuan, S. Zhang, and D. Liu. A comparative analysis of intra-city human mobility by taxi. Physica A: Statistical Mechanics and its Applications, 420:134--147, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  114. Z. Wang, Y. Zhang, Y. Li, Q. Wang, and F. Xia. Exploiting social influence for context-aware event recommendation in event-based social networks. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pages 1--9, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  115. A. G. Wilson. Urban and regional models in geography and planning. Wiley,, New Jersey, 1974.Google ScholarGoogle Scholar
  116. F. Xia, L. Liu, B. Jedari, and S. K. Das. Pis: A multi-dimensional routing protocol for socially-aware networking. IEEE Transactions on Mobile Computing, 15(11):2825--2836, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. F. Xia, L. Liu, J. Li, A. M. Ahmed, L. T. Yang, and J. Ma. Beeinfo: Interest-based forwarding using artificial bee colony for socially aware networking. IEEE Transactions on Vehicular Technology, 64(3):1188-- 1200, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  118. F. Xia, L. Liu, J. Li, J. Ma, and A. V. Vasilakos. Socially aware networking: A survey. IEEE Systems Journal, 9(3):904--921, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  119. F. Xia, A. Rahim, X. Kong, M. Wang, Y. Cai, and J. Wang. Modeling and analysis of large-scale urban mobility for green transportation. IEEE Transactions on Industrial Informatics, 14(4):1469--1481, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  120. F. Xia, J. Wang, X. Kong, Z. Wang, J. Li, and C. Liu. Exploring human mobility patterns in urban scenarios: A trajectory data perspective. IEEE Communications Magazine, 56(3):142--149, 2018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. X. Y. Yan, W. X. Wang, Z. Y. Gao, and Y. C. Lai. Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 8(1), 2017.Google ScholarGoogle Scholar
  122. Y. Yang, N. V. Chawla, P. Basu, B. Prabhala, and T. L. Porta. Link prediction in human mobility networks. In Ieee/acm International Conference on Advances in Social Networks Analysis and Mining, pages 380--387, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. F. Yi, Y. Gu, H. Wang, Y. Sun, and L. Sun. Mobility pattern based relationship inference from spatiotemporal data. In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1--6, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  124. M. Yin, M. Sheehan, S. Feygin, J. Paiement, and A. Pozdnoukhov. A generative model of urban activities from cellular data. IEEE Transactions on Intelligent Transportation Systems, 19(6):1682--1696, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  125. Z. Yu, H. Wang, B. Guo, T. Gu, and T. Mei. Supporting serendipitous social interaction using human mobility prediction. IEEE Transactions on Human- Machine Systems, 45(6):811--818, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  126. G. U. Yule. On a method of investigating periodicities in disturbed series, with special reference to wolfer's sunspot numbers. Philosophical Transactions of the Royal Society of London, 226(226):267--298, 1927.Google ScholarGoogle ScholarCross RefCross Ref
  127. S. Zeng, H.Wang, Y. Li, and D. Jin. Predictability and prediction of human mobility based on applicationcollected location data. In IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pages 28--36, 2017.Google ScholarGoogle Scholar
  128. F. Zhang, J. Zhao, C. Tian, C. Xu, X. Liu, and L. Rao. Spatiotemporal segmentation of metro trips using smart card data. IEEE Transactions on Vehicular Technology, 65(3):1137--1149, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  129. J. Zhao, F. Zhang, L. Tu, C. Xu, D. Shen, C. Tian, X. Y. Li, and Z. Li. Estimation of passenger route choice pattern using smart card data for complex metro systems. IEEE Transactions on Intelligent Transportation Systems, 18(4):790--801, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. K. Zhao, M. Musolesi, P. Hui, W. Rao, and S. Tarkoma. Explaining the power-law distribution of human mobility through transportation modality decomposition. Scientific reports, 5(9136):1--7, 2015.Google ScholarGoogle Scholar
  131. Y. Zheng. Trajectory Data Mining: An Overview. ACM, New York, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Y. Ma. Understanding mobility based on gps data. In International Conference on Ubiquitous Computing, pages 312--321. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Y. Zheng, X. Xie, and W. Y. Ma. Geolife: A collaborative social networking service among user, location and trajectory. Bulletin of the Technical Committee on Data Engineering, 33(2):32--39, 2011.Google ScholarGoogle Scholar
  134. Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In International Conference on World Wide Web, pages 791--800. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. G. K. Zipf. The p1p2/d hypothesis: On the intercity movement of persons. American Sociological Review, 11(6):677--686, 1946.Google ScholarGoogle ScholarCross RefCross Ref
  136. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Press, New Jersey, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Urban Human Mobility: Data-Driven Modeling and Prediction
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGKDD Explorations Newsletter
        ACM SIGKDD Explorations Newsletter  Volume 21, Issue 1
        June 2019
        52 pages
        ISSN:1931-0145
        EISSN:1931-0153
        DOI:10.1145/3331651
        Issue’s Table of Contents

        Copyright © 2019 Authors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 May 2019

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader