skip to main content
research-article
Public Access

The Moser--Tardos Framework with Partial Resampling

Authors Info & Claims
Published:17 August 2019Publication History
Skip Abstract Section

Abstract

The resampling algorithm of Moser and Tardos is a powerful approach to develop constructive versions of the Lovász Local Lemma. We generalize this to partial resampling: When a bad event holds, we resample an appropriately random subset of the variables that define this event rather than the entire set, as in Moser and Tardos. This is particularly useful when the bad events are determined by sums of random variables. This leads to several improved algorithmic applications in scheduling, graph transversals, packet routing, and so on. For instance, we settle a conjecture of Szabó and Tardos (2006) on graph transversals asymptotically and obtain improved approximation ratios for a packet routing problem of Leighton, Maggs, and Rao (1994).

References

  1. R. Aharoni, E. Berger, and R. Ziv. 2007. Independent systems of representatives in weighted graphs. Combinatorica 27, 3 (2007), 253--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Alon. 1988. The linear arboricity of graphs. Isr. J. Math. 62, 3 (1988), 311--325.Google ScholarGoogle ScholarCross RefCross Ref
  3. N. Alon. 1992. The strong chromatic number of a graph. Rand. Struct. Algor. 3, 1 (1992), 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y. Azar and A. Epstein. 2005. Convex programming for scheduling unrelated parallel machines. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’05) 331--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Bissacot, R. Fernandez, A. Procacci, and B. Scoppola. 2011. An improvement of the Lovász Local Lemma via cluster expansion. Combin. Probab. Comput. 20--5 (2011), 709--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Bollobás, P. Erdős, and E. Szemerédi. 1975. On complete subgraphs of r-chromatic graphs. Discr. Math. 13, 2 (1975), 97--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Chen, D. Harris, and A. Srinivasan. 2016. Partial resampling to approximate covering integer programs. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1984--2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Dubhashi and D. Ranjan. 1996. Balls and bins: A study in negative dependence. Random Structures 8 Algorithms 13, 2 (1998), 99--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Erdős and L. Lovász. 1975. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, Vol. 11 of Colloq. Math. Soc. J. Bolyai. 609--627. North-Holland.Google ScholarGoogle Scholar
  10. Alessandra Graf and Penny Haxell. 2018. Finding independent transversals efficiently. arXiv preprint arXiv:1811.02687.Google ScholarGoogle Scholar
  11. B. Haeupler, B. Saha, and A. Srinivasan. 2011. New constructive aspects of the Lovász Local Lemma. J. ACM 58, 6 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Harris. 2016. New bounds for the Moser-Tardos distribution. arXiv preprint arXiv:1610.09653.Google ScholarGoogle Scholar
  13. D. Harris and A. Srinivasan. 2013. Constraint satisfaction, packet routing, and the Lovász Local Lemma. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC’13). 685--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Harris and A. Srinivasan. 2013. The Moser-Tardos framework with partial resampling. In Proceedings of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS’13). 469--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Harris and A. Srinivasan. 2017. Algorithmic and enumerative aspects of the Moser-Tardos distribution. ACM Trans. Algor. 13, 3 (2017), 33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Harris and A. Srinivasan. 2017. A constructive Lovász Local Lemma for permutations. Theory Comput. 13, 17 (2017), 1--41.Google ScholarGoogle ScholarCross RefCross Ref
  17. N. J. A. Harvey. 2015. A note on the discrepancy of matrices with bounded row and column sums. Discr. Math. 338, 4 (2015), 517--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Haxell and T. Szabó. 2006. Odd independent transversals are odd. Combin. Probab. Comput. 15, 1--2 (2006), 193--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. E. Haxell. 2001. A note on vertex list colouring. Combin. Probab. Comput. 10, 4 (2001), 345--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. E. Haxell. 2008. An improved bound for the strong chromatic number. J. Graph Theory 58, 2 (2008), 148--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. E. Haxell, T. Szabó, and G. Tardos. 2003. Bounded size components—Partitions and transversals. J. Combin. Theory B 88, 2 (2003), 281--297. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Jin. 1992. Complete subgraphs of r-partite graphs. Combin. Probab. Comput. 1, 3 (1992), 241--250.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V. Vazirani. 1987. Global wire routing in two-dimensional arrays. Algorithmica 1, 1--4 (1987), 113--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. T. Leighton, C.-J. Lu, S. B. Rao, and A. Srinivasan. 2001. New algorithmic aspects of the local lemma with applications to routing and partitioning. SIAM J. Comput. 31, 2 (2001), 626--641. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. T. Leighton, B. M. Maggs, and S. B. Rao. 1994. Packet routing and jobshop scheduling in O(congestion + dilation) steps. Combinatorica 14, 2 (1994), 167--186.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. K. Lenstra, D. B. Shmoys, and É. Tardos. 1990. Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 1--3 (1990), 259--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P.-S. Loh and B. Sudakov. 2007. Independent transversals in locally sparse graphs. J. Combin. Theory B 97, 6 (2007), 904--918. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Moser and G. Tardos. 2010. A constructive proof of the general Lovász Local Lemma. J. ACM 57, 2 (2010), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. B. Peis and A. Wiese. 2011. Universal packet routing with arbitrary bandwidths and transit times. In Proceedings of the 15th International Conference on Integer Programming and Combinatorial Optimization (IPCO’11). 362--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Raghavan and C. D. Thompson. 1987. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 4 (1987), 365--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Rothvoß. 2013. A simpler proof for O(congestion + dilation) packet routing. In Proceedings of the 16th International Conference on Integer Programming and Combinatorial Optimization (IPCO’13). 336--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. C. Scheideler. 1998. Universal routing strategies for interconnection networks. In Lecture Notes in Computer Science, Vol. 1390. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. P. Schmidt, A. Siegel, and A. Srinivasan. 1995. Chernoff-Hoeffding bounds for applications with limited independence. SIAM J. Discr. Math. 8, 2 (1995), 223--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Singh. 2008. Iterative Methods in Combinatorial Optimization. Ph.D. Dissertation, Tepper School of Business, Carnegie-Mellon University.Google ScholarGoogle Scholar
  35. T. Szabó and G. Tardos. 2006. Extremal problems for transversals in graphs with bounded degree. Combinatorica 26, 3 (2006), 333--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. Yuster. 1997. Independent transversals in r-partite graphs. Discr. Math. 176, 1--3 (1997), 255--261. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The Moser--Tardos Framework with Partial Resampling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 66, Issue 5
        Distributed Computing, Algorithms and Data Structures, Algorithms, Scientific Computing, Derandomizing Algorithms, Online Algorithms and Algorithmic Information Theory
        October 2019
        266 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/3350420
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 August 2019
        • Accepted: 1 June 2019
        • Revised: 1 October 2018
        • Received: 1 June 2014
        Published in jacm Volume 66, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format