skip to main content
research-article
Public Access

Non-linear sphere tracing for rendering deformed signed distance fields

Published:08 November 2019Publication History
Skip Abstract Section

Abstract

Signed distance fields (SDFs) are a powerful implicit representation for modeling solids, volumes and surfaces. Their infinite resolution, controllable continuity and robust constructive solid geometry operations, coupled with smooth blending, enable powerful and intuitive sculpting tools for creating complex SDF models. SDF metric properties also admit efficient surface rendering with sphere tracing. Unfortunately, SDFs remain incompatible with many popular direct deformation techniques which re-position a surface via its explicit representation. Linear blend skinning used in character articulation, for example, directly displaces each vertex of a triangle mesh. To overcome this limitation, we propose a variant of sphere tracing for directly rendering deformed SDFs. We show that this problem reduces to integrating a non-linear ordinary differential equation. We propose an efficient numerical solution, with controllable error, which first automatically computes an initial value along each cast ray before walking conservatively along a curved ray in the undeformed space according to the signed distance. Importantly, our approach does not require knowledge, computation or even global existence of the inverse deformation, which allows us to readily apply many existing forward deformations. We demonstrate our method's effectiveness for interactive rendering of a variety of popular deformation techniques that were, to date, limited to explicit surfaces.

Skip Supplemental Material Section

Supplemental Material

a229-seyb.mp4

mp4

124.4 MB

References

  1. Chandrajit Bajaj, Jim Blinn, Brian Wyvill, Marie-Paule Cani, Alyn Rockwood, and Geoff Wyvill. 1997. Introduction to Implicit Surfaces. Morgan Kaufmann.Google ScholarGoogle Scholar
  2. Csaba Bálint and Gábor Valasek. 2018. Accelerating Sphere Tracing. Proceedings of Eurographics Short Papers (2018), 4 pages. https://doi.org/10/gfz542Google ScholarGoogle Scholar
  3. Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 26, 3 (July 2007), 72. https://doi.org/10/d2ck5vGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  4. Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto Peitgen, Dietmar Saupe, Richard F. Voss, Yuval Fisher, and Michael McGuire. 1988. The Science of Fractal Images (1st ed.). Springer-Verlag. https://doi.org/frdznzGoogle ScholarGoogle Scholar
  5. Alan H. Barr. 1984. Global and Local Deformations of Solid Primitives. Computer Graphics (Proceedings of SIGGRAPH) 18, 3 (July 1984), 21--30. https://doi.org/10/fcwvgwGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alan H. Barr. 1986. Ray Tracing Deformed Surfaces. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 287--296. https://doi.org/10/cpqr6gGoogle ScholarGoogle Scholar
  7. Thaddeus Beier and Shawn Neely. 1992. Feature-Based Image Metamorphosis. Computer Graphics (Proceedings of SIGGRAPH) 26, 2 (July 1992), 35--42. https://doi.org/10/crjpphGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Berger, T. Trout, and N. Levit. 1990. Ray Tracing Mirages. IEEE Computer Graphics & Applications 10, 3 (May 1990), 36--41. https://doi.org/10/cfbfc3Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. James F. Blinn. 1982. A Generalization of Algebraic Surface Drawing. Computer Graphics (Proceedings of SIGGRAPH) 16, 3 (July 1982), 273. https://doi.org/10/fgvzkfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Bogacki and L.F. Shampine. 1989. A 3(2) Pair of Runge-Kutta Formulas. Applied Mathematics Letters 2, 4 (1989), 321 -- 325. https://doi.org/10/cwcdkxGoogle ScholarGoogle ScholarCross RefCross Ref
  11. Brinx Software. 2019. MasterpieceVR. https://www.masterpiecevr.com/Google ScholarGoogle Scholar
  12. John Charles Butcher and Nicolette Goodwin. 2008. Numerical methods for ordinary differential equations. Vol. 2. Wiley Online Library. https://doi.org/10/fhv3h9Google ScholarGoogle Scholar
  13. M. Cani-Gascuel and M. Desbrun. 1997. Animation of Deformable Models Using Implicit Surfaces. IEEE Transactions on Visualization and Computer Graphics 3, 1 (Jan. 1997), 39--50. https://doi.org/10/c6bqg2Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. 2010. Interactive Rendering of Non-Constant, Refractive Media Using the Ray Equations of Gradient-Index Optics. Computer Graphics Forum 29, 4 (2010), 1375--1382. https://doi.org/10/fbff4nGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huawei Chen, Jürgen Hesser, and Reinhard Männer. 2001. Fast Volume Deformation Using Inverse-Ray-Deformation and FFD. In GraphiCon.Google ScholarGoogle Scholar
  16. Brian Curless and Marc Levoy. 1996. A Volumetric Method for Building Complex Models from Range Images. In Annual Conference Series (Proceedings of SIGGRAPH). ACM Press, New York, NY, USA, 303--312. https://doi.org/10/crn3vrGoogle ScholarGoogle Scholar
  17. Fernando De Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes Based on Fundamental Solutions of Elasticity. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 40:1--40:11. https://doi.org/10/gfz56kGoogle ScholarGoogle Scholar
  18. Mathieu Desbrun and Marie-Paule Gascuel. 1995. Animating Soft Substances with Implicit Surfaces. In Annual Conference Series (Proceedings of SIGGRAPH). ACM, New York, NY, USA, 287--290. https://doi.org/10/b96ndxGoogle ScholarGoogle Scholar
  19. J. R. Dormand and P. J. Prince. 1980. A Family of Embedded Runge-Kutta Formulae. J. Comput. Appl. Math. 6, 1 (March 1980), 19--26. https://doi.org/10/cfw5fcGoogle ScholarGoogle ScholarCross RefCross Ref
  20. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Kenneth Perlin, and Steven Worley. 2003. Texturing and modeling: a procedural approach (3rd ed.). Morgan Kaufmann, San Francisco, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Alex Evans. 2015. Learning from Failure: a Survey of Promising, Unconventional and Mostly Abandoned Renderers for "Dreams PS4", a Geometrically Dense, Painterly UGC Game. ACM SIGGRAPH Course Notes, Article 2 (2015). https://doi.org/10/gf2v8vGoogle ScholarGoogle Scholar
  22. Facebook Technologies. 2019. Oculus Medium. https://www.oculus.com/medium/Google ScholarGoogle Scholar
  23. E. Fehlberg. 1970. Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6, 1 (March 1970), 61--71. https://doi.org/10/cc7qv5Google ScholarGoogle ScholarCross RefCross Ref
  24. Takushi Fujita, Katsuhiko Hirota, and Kouichi Murakami. 1990. Representation of splashing water using metaball model. Fujitsu 41, 2 (1990), 159--165. (in Japanese).Google ScholarGoogle Scholar
  25. Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas Funkhouser. 2019. Learning Shape Templates with Structured Implicit Functions. arXiv:1904.06447 [cs] (April 2019). arXiv:cs/1904.06447Google ScholarGoogle Scholar
  26. Olivier Gourmel, Loic Barthe, Marie-Paule Cani, Brian Wyvill, Adrien Bernhardt, Mathias Paulin, and Herbert Grasberger. 2013. A Gradient-based Implicit Blend. ACM Transactions on Graphics 32, 2 (2013), 12. https://doi.org/10/gf6wk7Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Eduard Gröller. 1995. Nonlinear Ray Tracing: Visualizing Strange Worlds. The Visual Computer 11, 5 (May 1995), 263--274. https://doi.org/10/ffcq74Google ScholarGoogle ScholarCross RefCross Ref
  28. Diego Gutierrez, Adolfo Muñoz, Oscar Anson, and Francisco J. Seron. 2005. Non-Linear Volume Photon Mapping. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). Eurographics Association, 291--300. https://doi.org/10/gfzngkGoogle ScholarGoogle Scholar
  29. J.C. Hart, E. Bachta, W. Jarosz, and T. Fleury. 2002. Using Particles to Sample and Control More Complex Implicit Surfaces. In Shape Modeling International. https://doi.org/10/dfw2ssGoogle ScholarGoogle Scholar
  30. John C. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces. The Visual Computer 12, 10 (Dec. 1996), 527--545. https://doi.org/10/b3q2p6Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Ilic and P. Fua. 2006. Implicit Meshes for Surface Reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 2 (Feb. 2006), 328--333. https://doi.org/10/ctgm5gGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  32. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 30, 4 (July 2011), 78:1--78:8. https://doi.org/10/ckcmsjGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  33. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-Time Shape Deformation. In ACM SIGGRAPH Course Notes. https://doi.org/10/gf2ng4Google ScholarGoogle Scholar
  34. Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S. Thorne. 2015. Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar. Classical and Quantum Gravity 32, 6 (Feb. 2015), 065001. https://doi.org/10/gdvj4rGoogle ScholarGoogle ScholarCross RefCross Ref
  35. Stefan Jeschke, Stephan Mantler, and Michael Wimmer. 2007. Interactive Smooth and Curved Shell Mapping. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering), Jan Kautz and Sumanta Pattanaik (Eds.). The Eurographics Association, 351--360. https://doi.org/10/gfz557Google ScholarGoogle Scholar
  36. M. W. Jones, J. A. Baerentzen, and M. Sramek. 2006. 3D Distance Fields: A Survey of Techniques and Applications. IEEE Transactions on Visualization and Computer Graphics 12, 4 (July 2006), 581--599. https://doi.org/10/bwnmjsGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 26, 3 (July 2007). https://doi.org/10/bqj5jkGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  38. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of Hermite Data. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 21, 3 (July 2002), 339--346. https://doi.org/10/bdg3spGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  39. Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger. 2013. Improved Ray Casting of Procedural Distance Bounds. Journal of Graphics Tools 17, 4 (Oct. 2013), 127--138. https://doi.org/10/gfz54sGoogle ScholarGoogle ScholarCross RefCross Ref
  40. Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger. 2014. Enhanced Sphere Tracing. In STAG: Smart Tools & Apps for Graphics. 8. https://doi.org/10/gfz549Google ScholarGoogle Scholar
  41. A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. 2007. Interactive Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic. In Proceedings of IEEE Symposium on Interactive Ray Tracing. 11--18. https://doi.org/10/fkxrdvGoogle ScholarGoogle Scholar
  42. A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. 2009. Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Computer Graphics Forum 28, 1 (2009), 26--40. https://doi.org/10/d5s7khGoogle ScholarGoogle ScholarCross RefCross Ref
  43. Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. 2001. Feature Sensitive Surface Extraction from Volume Data. In Annual Conference Series (Proceedings of SIGGRAPH) (SIGGRAPH '01). ACM, New York, NY, USA, 57--66. https://doi.org/10/cbh7f9Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Johann Korndorfer. 2015. The Timeless Way of Building Geometry - How to create content with Signed Distance Functions. https://www.youtube.com/watch?v=s8nFqwOho-sGoogle ScholarGoogle Scholar
  45. Dan Koschier, Crispin Deul, and Jan Bender. 2016. Hierarchical Hp-Adaptive Signed Distance Fields. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation. Eurographics Association, Goslar Germany, Germany, 189--198.Google ScholarGoogle Scholar
  46. Yair Kurzion and Roni Yagel. 1995. Space Deformation Using Ray Deflectors. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Patrick M. Hanrahan and Werner Purgathofer (Eds.). Springer-Verlag, 21--30. https://doi.org/10/gfz54wGoogle ScholarGoogle Scholar
  47. Yijing Li and Jernej Barbič. 2018. Immersion of Self-Intersecting Solids and Surfaces. ACM Transactions on Graphics 37, 4 (2018). https://doi.org/10/gd52q5Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics (Proceedings of SIGGRAPH) 21, 4 (Aug. 1987), 163--169. https://doi.org/10/ft9gshGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  49. Media Molecule. 2019. Dreams PS4. https://www.mediamolecule.com/games/dreamsGoogle ScholarGoogle Scholar
  50. Don Mitchell. 1990. Robust Ray Intersection with Interval Arithmetic. In Proceedings of Graphics Interface, Vol. Halifax. 68--74. https://doi.org/10/gfz56mGoogle ScholarGoogle Scholar
  51. Fabrice Neyret. 1996. Local Illumination in Deformed Space. Technical Report RR-2856. INRIA.Google ScholarGoogle Scholar
  52. Stanley Osher and James A Sethian. 1988. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comput. Phys. 79, 1 (Nov. 1988), 12--49. https://doi.org/10/cq9w6rGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  53. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. arXiv:1901.05103 [cs] (Jan. 2019). arXiv:cs/1901.05103Google ScholarGoogle Scholar
  54. A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. 1995. Function Representation in Geometric Modeling: Concepts, Implementation and Applications. The Visual Computer 11, 8 (Aug. 1995), 429--446. https://doi.org/10/fsqzrwGoogle ScholarGoogle ScholarCross RefCross Ref
  55. Ken H. Perlin and Eric M. Hoffert. 1989. Hypertexture. Computer Graphics (Proceedings of SIGGRAPH) 23, 3 (July 1989), 253--262. https://doi.org/10/fdmsxdGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  56. Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. 2005. Shell Maps. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (July 2005), 626. https://doi.org/10/d4bh4gGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  57. Tim Reiner, Gregor Mückl, and Carsten Dachsbacher. 2011. Interactive Modeling of Implicit Surfaces Using a Direct Visualization Approach with Signed Distance Functions. Computers & Graphics 35, 3 (June 2011), 596--603. https://doi.org/10/fsnj24Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kenneth B. Russell. 1999. IMPS: Implicit Surfaces for Interactive Animated Characters. Masters Thesis. Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  59. Tetsu R. Satoh. 2003. Symplectic Ray Tracing: A New Approach to Non-Linear Ray Tracing by Using Hamiltonian Dynamics. In Visualization and Data Analysis, Vol. 5009. International Society for Optics and Photonics, 277--286. https://doi.org/10/fr5tg6Google ScholarGoogle Scholar
  60. Tanner Schmidt, Richard Newcombe, and Dieter Fox. 2014. DART: Dense Articulated Real-Time Tracking. In Robotics: Science and Systems, Vol. 2. Robotics: Science and Systems Foundation. https://doi.org/10/gf2dr2Google ScholarGoogle Scholar
  61. Thomas W. Sederberg and Scott R. Parry. 1986. Free-Form Deformation of Solid Geometric Models. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 151--160. https://doi.org/10/cb8rr3Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. F. J. Seron, D. Gutierrez, G. Gutierrez, and E. Cerezo. 2004. Visualizing Sunsets through Inhomogeneous Atmospheres. In Proceedings of Computer Graphics International (CGI). 349--356. https://doi.org/10/fg79hzGoogle ScholarGoogle Scholar
  63. J. A. Sethian and Peter Smereka. 2003. Level Set Methods for Fluid Interfaces. Annual Review of Fluid Mechanics 35, 1 (2003), 341--372. https://doi.org/10/ffqv25Google ScholarGoogle ScholarCross RefCross Ref
  64. Miroslava Slavcheva, Maximilian Baust, and Slobodan Ilic. 2017. Towards Implicit Correspondence in Signed Distance Field Evolution. In Proceedings of the International Conference on Computer Vision (ICCV). https://doi.org/10/c935Google ScholarGoogle ScholarCross RefCross Ref
  65. J. Sloup. 2003. Visual Simulation of Refraction Phenomena in the Earth's Atmosphere. In Proceedings on Seventh International Conference on Information Visualization (IV). 452--457. https://doi.org/10/czt7csGoogle ScholarGoogle ScholarCross RefCross Ref
  66. Jos Stam and Eric Languénou. 1996. Ray Tracing in Non-Constant Media. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Xavier Pueyo and Peter Schröder (Eds.). Springer-Verlag, 225--234.Google ScholarGoogle Scholar
  67. Barton T. Stander and John C. Hart. 1994. A Lipschitz Method for Accelerated Volume Rendering. In Proceedings of the 1994 Symposium on Volume Visualization (VVS '94). ACM, New York, NY, USA, 107--114. https://doi.org/10/dxj3vzGoogle ScholarGoogle Scholar
  68. Masamichi Sugihara, Brian Wyvill, and Ryan Schmidt. 2010. WarpCurves: A Tool for Explicit Manipulation of Implicit Surfaces. Computers & Graphics 34, 3 (June 2010), 282--291. https://doi.org/10/dqnmqjGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  69. Jonathan Taylor, Vladimir Tankovich, Danhang Tang, Cem Keskin, David Kim, Philip Davidson, Adarsh Kowdle, and Shahram Izadi. 2017. Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (Nov. 2017), 244:1--244:12. https://doi.org/10/gcqbhtGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  70. Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. 2017. Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 1466--1474. https://doi.org/10/gfz56dGoogle ScholarGoogle ScholarCross RefCross Ref
  71. Greg Turk and James F. O'Brien. 1999. Variational Implicit Surfaces. Technical Report GIT-GVU-99-15. Georgia Institute of Technology.Google ScholarGoogle Scholar
  72. Greg Turk and James F O'Brien. 2005. Shape Transformation using Variational Implicit Functions. In ACM SIGGRAPH Course Notes. ACM, 13. https://doi.org/10/b6hfjfGoogle ScholarGoogle Scholar
  73. Unbound Technologies. 2019. Unbound. http://unbound.io/Google ScholarGoogle Scholar
  74. Unity Technologies. 2019. Unity3D. https://unity.com/Google ScholarGoogle Scholar
  75. Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani, Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. 2013. Implicit Skinning: RealTime Skin Deformation with Contact Modeling. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 125:1--125:12. https://doi.org/10/gfz54qGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  76. Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and Marie-Paule Cani. 2014. Robust Iso-Surface Tracking for Interactive Character Skinning. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 33, 6 (Nov. 2014), 189:1--189:11. https://doi.org/10/gfz54rGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  77. Andrew P. Witkin and Paul S. Heckbert. 1994. Using Particles to Sample and Control Implicit Surfaces. In Annual Conference Series (Proceedings of SIGGRAPH). ACM, New York, NY, USA, 269--277. https://doi.org/10/bv24kcGoogle ScholarGoogle Scholar
  78. Brian Wyvill, Andrew Guy, and Eric Galin. 1998. The Blob Tree- Warping, Blending and Boolean Operations in an Implicit Surface Modeling System. Technical Report. University of Calgary. https://doi.org/gfz57dGoogle ScholarGoogle Scholar
  79. Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the CSG Tree: Warping, Blending and Boolean Operations in an Implicit Surface Modeling System. Computer Graphics Forum 18, 2 (1999), 149--158. https://doi.org/10/ffd743Google ScholarGoogle ScholarCross RefCross Ref
  80. Brian Wyvill, Craig McPheeters, and Geoff Wyvill. 1986a. Animating Soft Objects. The Visual Computer 2, 4 (Aug. 1986), 235--242. https://doi.org/10/ct7psxGoogle ScholarGoogle ScholarCross RefCross Ref
  81. Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986b. Data Structure for Soft Objects. The Visual Computer 2, 4 (Aug. 1986), 227--234. https://doi.org/10/dndmwcGoogle ScholarGoogle ScholarCross RefCross Ref
  82. Geoff Wyvill and Andrew Trotman. 1990. Ray-Tracing Soft Objects. In Proceedings of Computer Graphics International (CGI), Tat-Seng Chua and Tosiyasu L. Kunii (Eds.). Springer Japan, 469--476.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Non-linear sphere tracing for rendering deformed signed distance fields

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 38, Issue 6
          December 2019
          1292 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3355089
          Issue’s Table of Contents

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 November 2019
          Published in tog Volume 38, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader