skip to main content
research-article
Open Access

Real2Sim: visco-elastic parameter estimation from dynamic motion

Published:08 November 2019Publication History
Skip Abstract Section

Abstract

This paper presents a method for optimizing visco-elastic material parameters of a finite element simulation to best approximate the dynamic motion of real-world soft objects. We compute the gradient with respect to the material parameters of a least-squares error objective function using either direct sensitivity analysis or an adjoint state method. We then optimize the material parameters such that the simulated motion matches real-world observations as closely as possible. In this way, we can directly build a useful simulation model that captures the visco-elastic behaviour of the specimen of interest. We demonstrate the effectiveness of our method on various examples such as numerical coarsening, custom-designed objective functions, and of course real-world flexible elastic objects made of foam or 3D printed lattice structures, including a demo application in soft robotics.

Skip Supplemental Material Section

Supplemental Material

a236-hahn.mp4

mp4

152.3 MB

References

  1. Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM Transactions on Graphics 37, 4 (2018), 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Jernej Barbič and Doug L. James. 2005. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3 (2005), 982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. James M. Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization for cable-driven soft robot locomotion. Robotics: Science and Systems (2019).Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Bickel, M. Bächer, M. A. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Transactions on Graphics 28, 3 (2009), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Javier Bonet and Richard D. Wood. 2008. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  6. A. F. Bower, N. A. Fleck, A. Needleman, and N. Ogbonna. 1993. Indentation of a Power Law Creeping Solid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 441, 1911 (1993), 97--124. Google ScholarGoogle ScholarCross RefCross Ref
  7. Andrew M. Bradley. 2013. PDE-constrained optimization and the adjoint method. Technical Report. Stanford University. https://cs.stanford.edu/~ambrad/adjoint_tutorial.pdfGoogle ScholarGoogle Scholar
  8. Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-aware numerical coarsening for fabrication design. ACM Transactions on Graphics 36, 4 (2017), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven finite elements for geometry and material design. ACM Transactions on Graphics 34, 4 (2015), 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C.A. Felippa and B. Haugen. 2005. A unified formulation of small-strain corotational finite elements: I. Theory. Computer Methods in Applied Mechanics and Engineering 194, 21--24 (2005), 2285--2335. Google ScholarGoogle ScholarCross RefCross Ref
  11. Joachim Georgii and Rüdiger Westermann. 2008. Corotated Finite Elements Made Fast and Stable. Google ScholarGoogle ScholarCross RefCross Ref
  12. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  13. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2004), 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Arieh Iserles. 1996. A First Course in the Numerical Analysis of Differential Equations (Cambridge Texts in Applied Mathematics). Cambridge University Press.Google ScholarGoogle Scholar
  15. Doris H. U. Kochanek and Richard H. Bartels. 1984. Interpolating splines with local tension, continuity, and bias control. ACM SIGGRAPH Computer Graphics 18, 3 (1984), 33--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Mahnken. 2017. Identification of Material Parameters for Constitutive Equations. Encyclopedia of Computational Mechanics, Second Edition (eds E. Stein, R. Borst and T. J. Hughes) (2017). Google ScholarGoogle ScholarCross RefCross Ref
  17. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics 23, 3 (2004), 449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31 (2012). Google ScholarGoogle ScholarCross RefCross Ref
  19. Eder Miguel, David Miraut, and Miguel A. Otaduy. 2016. Modeling and Estimation of Energy-Based Hyperelastic Objects. Computer Graphics Forum 35, 2 (2016), 385--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Miguel, R. Tamstorf, D. Bradley, S. C. Schvartzman, B. Thomaszewski, B. Bickel, W. Matusik, S. Marschner, and M. A. Otaduy. 2013. Modeling and estimation of internal friction in cloth. ACM Transactions on Graphics 32 (2013).Google ScholarGoogle Scholar
  21. Matthias Müller and Markus Gross. 2004. Interactive Virtual Materials. In Proceedings of Graphics Interface 2004. 239--246.Google ScholarGoogle Scholar
  22. A.H.W. Ngan, H.T. Wang, B. Tang, and K.Y. Sze. 2005. Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. International Journal of Solids and Structures 42, 5--6 (2005), 1831--1846. Google ScholarGoogle ScholarCross RefCross Ref
  23. Jorge Nocedal. 1980. Updating quasi-Newton matrices with limited storage. Math. Comp. 35, 151 (1980), 773--773. Google ScholarGoogle ScholarCross RefCross Ref
  24. James F. O'Brien and Jessica K. Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH'99. ACM Press.Google ScholarGoogle Scholar
  25. R. W. Ogden. 1997. Non-Linear Elastic Deformations. Dover Publications Inc.Google ScholarGoogle Scholar
  26. W. C. Oliver and G. M. Pharr. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7, 06 (1992), 1564--1583.Google ScholarGoogle ScholarCross RefCross Ref
  27. Dinesh K. Pai, Jochen Lang, John Lloyd, and Robert J. Woodham. 1999. ACME, a telerobotic active measurement facility. In Experimental Robotics VI. Springer London, 391--400. Google ScholarGoogle ScholarCross RefCross Ref
  28. Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L. Richmond, and Som H. Yau. 2001. Scanning physical interaction behavior of 3D objects. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques - SIGGRAPH '01. ACM Press.Google ScholarGoogle Scholar
  29. Yixuan Qiu. 2019. LBFGS++. http://yixuan.cos.name/LBFGSpp. 2019-03-12.Google ScholarGoogle Scholar
  30. Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids. In ACM SIGGRAPH 2012 Courses. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Transactions on Graphics 37, 2 (2018), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems for Isotropic Distortion Energies. ACM Transactions on Graphics 38, 1 (2019), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Smooth-On, Inc. 2018. FlexFoam-iT!™ Series, Technical Overview. http://www.smooth-on.com/tb/files/FLEXFOAM-IT_SERIES.pdf.Google ScholarGoogle Scholar
  34. Luca Somm, David Hahn, Nitish Kumar, and Stelian Coros. 2019. Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots With Embedded Sensing. IEEE Robotics and Automation Letters 4, 2 (2019), 761--768. Google ScholarGoogle ScholarCross RefCross Ref
  35. SpectroPlast. 2019. https://spectroplast.com/.Google ScholarGoogle Scholar
  36. Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. Energetically Consistent Invertible Elasticity. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '12). 25--32.Google ScholarGoogle Scholar
  37. Stratasys, Ltd. 2018. The Stratasys F123 Series. http://www.stratasys.com/-/media/files/printer-spec-sheets/pss_fdm_f123series_1017a.pdfGoogle ScholarGoogle Scholar
  38. Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rosell Torres, Alejandro Rodríiguez, José M. Espadero, and Miguel A. Otaduy. 2016. High-resolution interaction with corotational coarsening models. ACM Transactions on Graphics 35, 6 (2016), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Bin Wang, Longhua Wu, KangKang Yin, Uri Ascher, Libin Liu, and Hui Huang. 2015. Deformation capture and modeling of soft objects. ACM Transactions on Graphics 34, 4 (2015), 94:1--94:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Chris Wojtan, Peter J. Mucha, and Greg Turk. 2006. Keyframe Control of Complex Particle Systems Using the Adjoint Method. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '06). Eurographics Association, 15--23. http://dl.acm.org/citation.cfm?id=1218064.1218067Google ScholarGoogle Scholar
  42. Hongyi Xu and Jernej Barbič. 2017. Example-based damping design. ACM Transactions on Graphics 36, 4 (2017), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material design using principal stretches. ACM Transactions on Graphics 34, 4 (2015), 75:1--75:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real2Sim: visco-elastic parameter estimation from dynamic motion

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 6
        December 2019
        1292 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3355089
        Issue’s Table of Contents

        Copyright © 2019 Owner/Author

        This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 November 2019
        Published in tog Volume 38, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader