skip to main content
10.1145/3356250.3360027acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Tagtag: material sensing with commodity RFID

Authors Info & Claims
Published:10 November 2019Publication History

ABSTRACT

Material sensing is an essential ingredient for many IoT applications. While hyperspectral camera, infrared, X-Ray, and Radar provide potential solutions for material identification, high cost is the major concern limiting their applications. In this paper, we explore the capability of employing RF signals for fine-grained material sensing with commodity RFID device. The key reason for our system to work is that the tag antenna's impedance is changed when it is close or attached to a target. The amount of impedance change is dependent on the target's material type, thus enabling us to utilize the impedance-related phase change available at commodity RFID devices for material sensing. Several key challenges are addressed before we turn the idea into a functional system: (i) the random tag-reader distance causes an additional unknown phase change on top of the phase change caused by the target material; (ii) the tag rotations cause phase shifts and (iii) for conductive liquid, there exists liquid reflection which interferes with the impedance-caused phase change. We address these challenges with novel solutions. Comprehensive experiments show high identification accuracies even for very similar materials such as Pepsi and Coke.

References

  1. N. Adair. Radio frequency identification (rfid) power budgets for packaging applications. PGK, 2005.Google ScholarGoogle Scholar
  2. E. M. Amin, R. Bhattacharyya, S. Kumar, and S. Sarma. Towards low-cost resolution optimized passive uhf rfid light sensing. In WAMICON, pages 1--6, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Balas, G. Epitropou, A. Tsapras, and N. Hadjinicolaou. A novel hyperspectral camera and analysis platform for the non-destructive material identification and mapping: An application in paintings by el greco. In IST, pages 211--215. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. Bhattacharyya, C. Floerkemeier, and S. Sarma. Low-cost, ubiquitous rfid-tagantenna-based sensing. IEEE, 98(9):1593--1600, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. Bhattacharyya, C. Floerkemeier, and S. Sarma. Rfid tag antenna based sensing: Does your beverage glass need a refill? In RFID, pages 126--133, 2010.Google ScholarGoogle Scholar
  6. R. Bhattacharyya, C. Floerkemeier, S. Sarma, and D. Deavours. Rfid tag antenna based temperature sensing in the frequency domain. In RFID, pages 70--77. IEEE, 2011.Google ScholarGoogle Scholar
  7. L.-X. Chuo, Z. Luo, D. Sylvester, D. Blaauw, and H.-S. Kim. Rf-echo: A non-line-of-sight indoor localization system using a low-power active rf reflector asic tag. In MobiCom, pages 222--234. ACM, 2017.Google ScholarGoogle Scholar
  8. A. Dhekne, M. Gowda, Y. Zhao, H. Hassanieh, and R. Roy Choudhury. Liquid: A wireless liquid identifier. In MobiSys, pages 1--13, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. M. Dobkin. The RF in RFID: passive UHF RFID in practice. Newnes, 2012.Google ScholarGoogle Scholar
  10. D. M. Dobkin and S. M. Weigand. Environmental effects on rfid tag antennas. In MTTS, pages 135--138, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. K. Fujimoto. Mobile antenna systems handbook. Artech House, 2008.Google ScholarGoogle Scholar
  12. H. Fukuda, K. Kosaka, and W. Hattori. Rfid-based sensing technology with microstrip lines. In Sensors, pages 839--842, 2014.Google ScholarGoogle Scholar
  13. C. Gao and Y. Li. Livetag: Sensing human-object interaction through passive chipless wifi tags. In NSDI, pages 165--178, 2018.Google ScholarGoogle Scholar
  14. J. D. Griffin, G. D. Durgin, A. Haldi, and B. Kippelen. Radio link budgets for 915 mhz rfid antennas placed on various objects. In Texas Wireless Symposium, 2005.Google ScholarGoogle Scholar
  15. U. Ha, Y. Ma, Z. Zhong, T. Hsu, and F. Adib. Learning food quality and safety from wireless stickers. In Hotnets, pages 106--112. ACM, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Hillyard, C. Qi, A. Al-Husseiny, G. D. Durgin, and N. Patwari. Focusing through walls: An e-shaped patch antenna improves whole-home radio tomography. In RFID, pages 174--181. IEEE, 2017.Google ScholarGoogle Scholar
  17. E. Jones, S. D. Pringle, and Z. Takats. Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue, 2 2018. US Patent App. 15/555,818.Google ScholarGoogle Scholar
  18. K. Joshi, D. Bharadia, M. Kotaru, and S. Katti. Wideo: fine-grained device-free motion tracing using rf backscatter. In NSDI, pages 189--204, 2015.Google ScholarGoogle Scholar
  19. M. A. A. H. Khan, R. Kukkapalli, P. Waradpande, S. Kulandaivel, N. Banerjee, N. Roy, and R. Robucci. Ram: Radar-based activity monitor. In INFOCOM, pages 1--9. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Korany, C. R. Karanam, and Y. Mostofi. Adaptive near-field imaging with robotic arrays.Google ScholarGoogle Scholar
  21. M. Kotaru, P. Zhang, and S. Katti. Localizing low-power backscatter tags using commodity wifi. In CoNEXT, pages 251--262. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Kumar and D. Katabi. Decimeter-level localization with a single wifi access point. In NSDI, pages 165--178, 2016.Google ScholarGoogle Scholar
  23. T. Li, Q. Liu, and X. Zhou. Practical human sensing in the light. In MobiSys, pages 71--84, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Ma, N. Selby, and F. Adib. Minding the billions: Ultra-wideband localization for deployed rfid tags. In MobiCom, pages 248--260. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Manzari, C. Occhiuzzi, S. Nawale, A. Catini, C. D. Natale, and G. Marrocco. Humidity sensing by polymer-loaded uhf rfid antennas. Sensors, 12(9):2851--2858, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  26. W. Mao, J. He, and L. Qiu. Cat: high-precision acoustic motion tracking. In MobiCom, pages 69--81. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. W. Mao, Z. Zhang, L. Qiu, J. He, Y. Cui, and S. Yun. Indoor follow me drone. In MobiSys, pages 345--358. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu. Leveraging directional antenna capabilities for fine-grained gesture recognition. In UbiComp, pages 541--551. ACM, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Nandakumar, B. Kellogg, and S. Gollakota. Wi-fi gesture recognition on existing devices. arXiv preprint arXiv:1411.5394, 2014.Google ScholarGoogle Scholar
  30. K. Ogawa, T. Hirokawa, and S. Nakamura. Identification of a material with a photon counting x-ray ct system. In Nuclear Science Symposium Conference Record, pages 2582 -- 2586, 2011.Google ScholarGoogle Scholar
  31. S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and S. Rangarajan. Rio: A pervasive rfid-based touch gesture interface. In MobiSys, pages 261--274. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. T. Prothro, G. D. Durgin, and J. D. Griffin. The effects of a metal ground plane on rfid tag antennas. In Antennas and Propagation Society International Symposium, pages 3241--3244. IEEE, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  33. B. M. Rankin, J. Meola, D. L. Perry, and J. R. Kaufman. Methods and challenges for target detection and material identification for longwave infrared hyperspectral imagery. In SPIE Defense Security, pages 1--12, 2016.Google ScholarGoogle Scholar
  34. W. F. Schmidt and K. Yoshino. Ion mobilities in non-polar dielectric liquids: silicone oils. IEEE Transactions on Dielectrics & Electrical Insulation, 22(5):2424--2427, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  35. L. Shangguan, Z. Zhou, and K. Jamieson. Enabling gesture-based interactions with objects. In MobiSys, pages 239--251. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Shi, J. Liu, H. Liu, and Y. Chen. Smart user authentication through actuation of daily activities leveraging wifi-enabled iot. In Mobihoc, page 5. ACM, 2017.Google ScholarGoogle Scholar
  37. J. R. Wait. Electromagnetic Wave Theory. Higher Education Press, 2002.Google ScholarGoogle Scholar
  38. G. Wang, C. Qian, J. Han, W. Xi, H. Ding, Z. Jiang, and J. Zhao. Verifiable smart packaging with passive rfid. In UbiComp, pages 156--166. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Wang, O. Abari, and S. Keshav. Challenge: Rfid hacking for fun and profit. sensors, 3(14):15, 2018.Google ScholarGoogle Scholar
  40. J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang, and B. Xie. Lifs: low human-effort, device-free localization with fine-grained subcarrier information. In MobiCom, pages 243--256. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Wang and D. Katabi. Dude, where's my card?: Rfid positioning that works with multipath and non-line of sight. SIGCOMM, 43(4):51--62, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Wang, J. Xiong, X. Chen, H. Jiang, R. K. Balan, and D. Fang. Tagscan: Simultaneous target imaging and material identification with commodity rfid devices. In MobiCom. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. B. H. Waters, A. P. Sample, and J. R. Smith. Adaptive impedance matching for magnetically coupled resonators based on passive uhf rfid. In PIERS Proceedings, pages 694--701. Citeseer, 2012.Google ScholarGoogle Scholar
  44. T. Wei and X. Zhang. mtrack: High-precision passive tracking using millimeter wave radios. In MobiCom, pages 117--129. ACM, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Wei and X. Zhang. Gyro in the air: tracking 3d orientation of batteryless internet-of-things. In MobiCom, pages 55--68. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In MobiCom, pages 537--549. ACM, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In MobiCom, pages 237--248. ACM, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. L. Yang, Y. Li, Q. Lin, X. Y. Li, and Y. Liu. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals. In MobiCom, pages 16--28. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. H.-S. Yeo, G. Flamich, P. Schrempf, D. Harris-Birtill, and A. Quigley. Radarcat: Radar categorization for input & interaction. In UIST, pages 833--841. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao. Strata: Fine-grained acoustic-based device-free tracking. In MobiSys, pages 15--28. ACM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. C. Zhang and X. Zhang. Pulsar: Towards ubiquitous visible light localization. In MobiCom, pages 33--35. ACM, 2017.Google ScholarGoogle Scholar
  52. O. Zhang and K. Srinivasan. Mudra: User-friendly fine-grained gesture recognition using wifi signals. In CoNEXT, pages 83--96. ACM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Z. Zhao, J. Wang, X. Zhao, C. Peng, Q. Guo, and B. Wu. Navilight: Indoor localization and navigation under arbitrary lights. In INFOCOM, pages 1--9. IEEE, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  54. Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng. Reusing 60ghz radios for mobile radar imaging. In MobiCom, pages 103--116. ACM, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tagtag: material sensing with commodity RFID

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SenSys '19: Proceedings of the 17th Conference on Embedded Networked Sensor Systems
      November 2019
      472 pages
      ISBN:9781450369503
      DOI:10.1145/3356250

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 November 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate174of867submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader