skip to main content
tutorial

A Review on OLAP Technologies Applied to Information Networks

Authors Info & Claims
Published:13 December 2019Publication History
Skip Abstract Section

Abstract

Many real systems produce network data or highly interconnected data, which can be called information networks. These information networks form a critical component in modern information infrastructure, constituting a large graph data volume. The analysis of information network data covers several technological areas, among them OLAP technologies. OLAP is a technology that enables multi-dimensional and multi-level analysis on a large volume of data, providing aggregated data visualizations with different perspectives. This article presents a literature review on the main applications of OLAP technology in the analysis of information network data. To achieve such goal, it shows a systematic review to list the works that apply OLAP technologies in graph data. It defines seven comparison criteria (Materialization, Network, Selection, Aggregation, Model, OLAP Operations, Analytics) to qualify the works found based on their functionalities. The works are analyzed according to each criterion and discussed to identify trends and challenges in the application of OLAP in the information network.

References

  1. Ziv Bar-yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming algorithms, with an application to counting triangles in graphs. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, San Francisco, California, 623--632. DOI:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.8563Google ScholarGoogle Scholar
  2. Albert-László Barabasi and Réka Albert. 1999. Emergence of scaling in random networks. Science (New York, N.Y.) 286, 5439 (October 1999), 509--512. DOI:https://doi.org/10.1126/SCIENCE.286.5439.509Google ScholarGoogle Scholar
  3. Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, and Hamid Reza Motahari-Nezhad. 2016. Scalable graph-based OLAP analytics over process execution data. Distributed and Parallel Databases 34, 3 (2016), 379--423. DOI:https://doi.org/10.1007/s10619-014-7171-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Seyed-Mehdi-Reza Beheshti, Boualem Benatallah, Hamid Reza Motahari-Nezhad, and Mohammad Allahbakhsh. 2012. A framework and a language for on-line analytical processing on graphs. In Proceedings of the Web Information Systems Engineering (WISE’12). 213--227. DOI:https://doi.org/10.1007/978-3-642-35063-4_16Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Stephen P. Borgatti and Martin G. Everett. 2006. A graph-theoretic perspective on centrality. Social Networks 28, 4 (October 2006), 466--484. DOI:https://doi.org/10.1016/j.socnet.2005.11.005Google ScholarGoogle ScholarCross RefCross Ref
  6. Ulrik Brandes and Thomas Erlebach (Eds.). 2005. Network Analysis (Methodological Foundations), Vol. 3418. Springer, Berlin. DOI:https://doi.org/10.1007/b106453Google ScholarGoogle Scholar
  7. William Brendel and Sinisa Todorovic. 2011. Learning spatiotemporal graphs of human activities. In Proceedings of the 2011 International Conference on Computer Vision. IEEE, 778--785. DOI:https://doi.org/10.1109/ICCV.2011.6126316Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Michel Caradec. 2018. Graph OLAP with Neo4j. Retrieved from https://github.com/michelcaradec/Graph-OLAP.Google ScholarGoogle Scholar
  9. Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A recursive model for graph mining. In Proceedings of 4th SIAM International Conference on Data Mining.Google ScholarGoogle ScholarCross RefCross Ref
  10. Zakia Challal, Omar Boussaid, and Kamel Boukhalfa. 2017. Minimizing negative influence in social networks: A graph OLAP based approach. In Proceedings of the Database and Expert Systems Applications. 378--386. DOI:https://doi.org/10.1007/978-3-319-64471-4_30Google ScholarGoogle ScholarCross RefCross Ref
  11. Surajit Chaudhuri and Umeshwar Dayal. 1997. An overview of data warehousing and OLAP technology. ACM SIGMOD Record 26, 1 (March 1997), 65--74. DOI:https://doi.org/10.1145/248603.248616Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. 2008. Graph OLAP: Towards online analytical processing on graphs. In Proceedings of the 2008 8th IEEE International Conference on Data Mining. IEEE, 103--112. DOI:https://doi.org/10.1109/ICDM.2008.30Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. 2009. Graph OLAP: A multi-dimensional framework for graph data analysis. Knowledge and Information Systems 21, 1 (October 2009), 41--63. DOI:https://doi.org/10.1007/s10115-009-0228-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. George Colliat. 1996. OLAP, relational, and multidimensional database systems. ACM SIGMOD Record 25, 3 (September 1996), 64--69. DOI:https://doi.org/10.1145/234889.234901Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Nigel Collier and Son Doan. 2012. GENI-DB: A database of global events for epidemic intelligence. Bioinformatics (Oxford, England) 28, 8 (April 2012), 1186--1188. DOI:https://doi.org/10.1093/bioinformatics/bts099Google ScholarGoogle Scholar
  16. Benoit Denis, Amine Ghrab, and Sabri Skhiri. 2013. A distributed approach for graph-oriented multidimensional analysis. In Proceedings of the 2013 IEEE International Conference on Big Data. IEEE, 9--16. DOI:https://doi.org/10.1109/BigData.2013.6691777Google ScholarGoogle ScholarCross RefCross Ref
  17. Reinhard Diestel. 2005. Graph Theory (Graduate Texts in Mathematics). Springer.Google ScholarGoogle Scholar
  18. Lorena Etcheverry and Alejandro A. Vaisman. 2012. QB4OLAP: A new vocabulary for OLAP cubes on the semantic web. In Proceedings of the CEUR Workshop. 905.Google ScholarGoogle Scholar
  19. Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos, Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law relationships of the Internet topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM’99), Vol. 29. ACM, New York, New York, 251--262. DOI:https://doi.org/10.1145/316188.316229Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman. 1998. Computing iceberg queries efficiently. In Proceedings of VLDB Conference. New York. http://www.vldb.org/conf/1998/p299.pdf.Google ScholarGoogle Scholar
  21. Daniela Florescu, Alon Levy, and Alberto Mendelzon. 1998. Database techniques for the World-Wide Web. ACM SIGMOD Record 27, 3 (September 1998), 59--74. DOI:https://doi.org/10.1145/290593.290605Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Linton C. Freeman. 1978. Centrality in social networks conceptual clarification. Social Networks 1, 3 (January 1978), 215--239. DOI:https://doi.org/10.1016/0378-8733(78)90021-7Google ScholarGoogle ScholarCross RefCross Ref
  23. Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro Vaisman, and Esteban Zimányi. 2015. A framework for building OLAP cubes on graphs. In Proceedings of the Advances in Databases and Information Systems. 92--105. DOI:https://doi.org/10.1007/978-3-319-23135-8_7Google ScholarGoogle ScholarCross RefCross Ref
  24. Amine Ghrab, Oscar Romero, Sabri Skhiri, and Esteban Zimányi. 2014. Analytics-Aware Graph Database Modeling. Technical Report. EURA NOVA Technical Series. Retrieved from https://research.euranova.eu/wp-content/uploads/analytics-aware-graph-database-modeling.pdf.Google ScholarGoogle Scholar
  25. Amine Ghrab, Sabri Skhiri, Salim Jouili, and Esteban Zimányi. 2013. An analytics-aware conceptual model for evolving graphs. In Proceedings of the Data Warehousing and Knowledge Discovery. 1--12. DOI:https://doi.org/10.1007/978-3-642-40131-2_1Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1, 1 (March 1997), 29--53. DOI:https://doi.org/10.1023/A:1009726021843Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Per Hage and Frank Harary. 1995. Eccentricity and centrality in networks. Social Networks 17, 1 (January 1995), 57--63. DOI:https://doi.org/10.1016/0378-8733(94)00248-9Google ScholarGoogle ScholarCross RefCross Ref
  28. Jiawei Han. 2009. Mining heterogeneous information networks by exploring the power of links. In Lecture Notes in Computer Science. Springer, 13--30. DOI:https://doi.org/10.1007/978-3-642-04747-3_2Google ScholarGoogle Scholar
  29. Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implementing data cubes efficiently. ACM SIGMOD Record 25, 2 (1996), 205--216. DOI:https://doi.org/10.1145/235968.233333Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wararat Jakawat, Cécile Favre, and Sabine Loudcher. 2014. OLAP on information networks: A new framework for dealing with bibliographic data. In New Trends in Databases and Information Systems. Springer, 361--370. DOI:https://doi.org/10.1007/978-3-319-01863-8_38Google ScholarGoogle Scholar
  31. Wararat Jakawat, Cécile Favre, and Sabine Loudcher. 2016. Graphs enriched by cubes for OLAP on bibliographic networks. International Journal of Business Intelligence and Data Mining 11, 1 (2016), 85. DOI:https://doi.org/10.1504/IJBIDM.2016.076435Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wararat Jakawat, Cécile Favre, and Sabine Loudcher. 2016. OLAP cube-based graph approach for bibliographic data. In Proceedings of the 42nd International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM’16), Vol. 1548. Harrachov, Czech Republic, 87--99.Google ScholarGoogle Scholar
  33. Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context similarity. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02). ACM, New York, 538. DOI:https://doi.org/10.1145/775047.775126Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ming Ji, Jiawei Han, and Marina Danilevsky. 2011. Ranking-based classification of heterogeneous information networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11). ACM, New York, 1298. DOI:https://doi.org/10.1145/2020408.2020603Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Han Jiawei, Micheline Kamber, and Jian Pei. 2012. Data Mining. Concepts and Techniques. Morgan Kaufmann, 159--160.Google ScholarGoogle Scholar
  36. Xin Jin, Jiawei Han, Liangliang Cao, Jiebo Luo, Bolin Ding, and Cindy Xide Lin. 2010. Visual cube and on-line analytical processing of images. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM’10). ACM, New York, 849. DOI:https://doi.org/10.1145/1871437.1871546Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Benedikt Kämpgen, Seán O’Riain, and Andreas Harth. 2015. Interacting with statistical linked data via OLAP operations. In Proceedings of the Semantic Web: ESWC 2012 Satellite Events. 87--101. DOI:https://doi.org/10.1007/978-3-662-46641-4_7Google ScholarGoogle ScholarCross RefCross Ref
  38. Seok Kang, Suan Lee, and Jinho Kim. 2019. Distributed graph cube generation using Spark framework. The Journal of Supercomputing OnlineFirst (10 January 2019), 1--22. https://link.springer.com/journal/11227/onlineFirst/page/9.Google ScholarGoogle ScholarCross RefCross Ref
  39. Ralph. Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. Wiley, 436 pages.Google ScholarGoogle Scholar
  40. B. Kitchenham and S. Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report. Department of Computer Science University of Durham, Durham, UK. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471.Google ScholarGoogle Scholar
  41. Sangkeun Lee, Sreenivas R. Sukumar, Seokyong Hong, and Seung Hwan Lim. 2016. Enabling graph mining in RDF triplestores using SPARQL for holistic in-situ graph analysis. Expert Systems with Applications 48 (2016), 9--25. https://www.sciencedirect.com/science/article/pii/S0957417415007708?via%3Dihub.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics of viral marketing. ACM Transactions on the Web 1, 1 (May 2007), Article 5. DOI:https://doi.org/10.1145/1232722.1232727Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved from http://snap.stanford.edu/data.Google ScholarGoogle Scholar
  44. Jure Leskovec and Rok Sosic. 2016. SNAP: A general-purpose network analysis and graph-mining library. ACM Transactions on Intelligent Systems and Technology 8, 1 (2016), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Bingdong Li, Jeff Springer, George Bebis, and Mehmet Hadi Gunes. 2013. A survey of network flow applications. Journal of Network and Computer Applications 36, 2 (2013), 567--581. DOI:https://doi.org/10.1016/j.jnca.2012.12.020Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sabine Loudcher, Wararat Jakawat, Edmundo Pavel Soriano Morales, and Cécile Favre. 2015. Combining OLAP and information networks for bibliographic data analysis: A survey. Scientometrics 103, 2 (May 2015), 471--487. DOI:https://doi.org/10.1007/s11192-015-1539-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Adriana Matei, Kuo-ming Chao, and Nick Godwin. 2015. OLAP for multidimensional semantic web databases. In Proceedings of the International Workshop on Business Intelligence for the Real-Time Enterprise. 81--96. DOI:https://doi.org/10.1007/978-3-662-46839-5_6Google ScholarGoogle ScholarCross RefCross Ref
  48. Konstantinos Morfonios and Georgia Koutrika. 2008. OLAP cubes for social searches: Standing on the shoulders of giants? In Proceedings of the 11th International Workshop on the Web and Databases (WebBD’08).Google ScholarGoogle Scholar
  49. Nan Li, Ziyu Guan, Lijie Ren, Jian Wu, Jiawei Han, and Xifeng Yan. 2013. gIceberg: Towards iceberg analysis in large graphs. In Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE’13), Vol. 1. IEEE, 1021--1032. DOI:https://doi.org/10.1109/ICDE.2013.6544894Google ScholarGoogle Scholar
  50. Mark Newman. 2010. Networks: An Introduction (1st ed.). Oxford University Press.Google ScholarGoogle ScholarCross RefCross Ref
  51. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The PageRank citation ranking: Bringing order to the web. In Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia, 161--172. DOI:https://doi.org/10.1.1.206.775Google ScholarGoogle Scholar
  52. Georgios A. Pavlopoulos, Maria Secrier, Charalampos N. Moschopoulos, Theodoros G. Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G. Bagos. 2011. Using graph theory to analyze biological networks. BioData Mining 4, 1 (April 2011), 10. DOI:https://doi.org/10.1186/1756-0381-4-10Google ScholarGoogle ScholarCross RefCross Ref
  53. Mary K. Pratt. 2017. What is BI? Business Intelligence Definition and Solutions | CIO. Retrieved from https://www.cio.com/article/2439504/business-intelligence/business-intelligence-definition-and-solutions.html.Google ScholarGoogle Scholar
  54. Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin. 2014. Scalable big graph processing in MapReduce. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14). ACM, New York, 827--838. DOI:https://doi.org/10.1145/2588555.2593661Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and Hongyan Li. 2011. Efficient topological OLAP on information networks. In Proceedings of the Database Systems for Advanced Applications. 389--403. DOI:https://doi.org/10.1007/978-3-642-20149-3_29Google ScholarGoogle ScholarCross RefCross Ref
  56. Mehwish Riaz, Emilia Mendes, and Ewan Tempero. 2009. A systematic review of software maintainability prediction and metrics. In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE, 367--377. DOI:https://doi.org/10.1109/ESEM.2009.5314233Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2015. A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering 14, 8 (2015), 1--45. DOI:https://doi.org/10.1109/TKDE.2016.2598561Google ScholarGoogle Scholar
  58. Chuan Shi and Philip S. Yu. 2017. Heterogeneous Information Network Analysis and Applications. Springer International Publishing, Cham. DOI:https://doi.org/10.1007/978-3-319-56212-4Google ScholarGoogle Scholar
  59. Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks: Principles and methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery 3, 2 (July 2012), 1--159. DOI:https://doi.org/10.2200/S00433ED1V01Y201207DMK005Google ScholarGoogle ScholarCross RefCross Ref
  60. Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks: A structural analysis approach. ACM SIGKDD Explorations Newsletter 14, 2 (April 2013), 20. DOI:https://doi.org/10.1145/2481244.2481248Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. 2008. Efficient aggregation for graph summarization. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD’08). ACM, New York,567. DOI:https://doi.org/10.1145/1376616.1376675Google ScholarGoogle Scholar
  62. Hanghang Tong, Christos Faloutsos, and Jia-yu Pan. 2006. Fast random walk with restart and its applications. In Proceedings of the 6th International Conference on Data Mining (ICDM’06). IEEE, 613--622. DOI:https://doi.org/10.1109/ICDM.2006.70Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Charalampos E. Tsourakakis. 2008. Fast counting of triangles in large real networks without counting: Algorithms and laws. In Proceedings of the 2008 8th IEEE International Conference on Data Mining. IEEE, 608--617. DOI:https://doi.org/10.1109/ICDM.2008.72Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. C. Von Ferber, T. Holovatch, Yu Holovatch, and V. Palchykov. 2009. Public transport networks: Empirical analysis and modeling. European Physical Journal B 68, 2 (2009), 261--275. DOI:https://doi.org/10.1140/epjb/e2009-00090-xGoogle ScholarGoogle ScholarCross RefCross Ref
  65. Jingdong Wang, Sujia Luo, and Jie Yuan. 2018. Analysis of computer network and communication system. Journal of Networking and Telecommunications 1, 1 (February 2018), 507--550. Retrieved from http://systems.enpress-publisher.com/index.php/JNT/article/view/228/217.Google ScholarGoogle Scholar
  66. Pengsen Wang, Bin Wu, and Bai Wang. 2015. TSMH graph cube: A novel framework for large scale multi-dimensional network analysis. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA’15). IEEE, 1--10. DOI:https://doi.org/10.1109/DSAA.2015.7344826Google ScholarGoogle ScholarCross RefCross Ref
  67. Zhengkui Wang, Qi Fan, Huiju Wang, Kian-Lee Tan, Divyakant Agrawal, and Amr El Abbadi. 2014. Pagrol: Parallel graph OLAP over large-scale attributed graphs. In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Vol. 1. IEEE, 496--507. DOI:https://doi.org/10.1109/ICDE.2014.6816676Google ScholarGoogle ScholarCross RefCross Ref
  68. Lili Wu, Roshan Sumbaly, Chris Riccomini, Gordon Koo, Hyung Jin Kim, Jay Kreps, and Sam Shah. 2012. Avatara: OLAP for web-scale analytics products. Proceedings of the VLDB Endowment 5, 12 (August 2012), 1874--1877. DOI:https://doi.org/10.14778/2367502.2367525Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Dan Yin and Hong Gao. 2014. Iceberg cube query on heterogeneous information networks. In Proceedings of the Wireless Algorithms, Systems, and Applications. 740--749. DOI:https://doi.org/10.1007/978-3-319-07782-6_66Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Dan Yin, Hong Gao, Zhaonian Zou, Jianzhong Li, and Zhipeng Cai. 2016. Approximate iceberg cube on heterogeneous dimensions. In Proceedings of the Database Systems for Advanced Applications, Vol. 9049. 82--97. DOI:https://doi.org/10.1007/978-3-319-32049-6_6Google ScholarGoogle Scholar
  71. Mu Yin, Bin Wu, and Zengfeng Zeng. 2012. HMGraph OLAP: A novel framework for multi-dimensional heterogeneous network analysis. In Proceedings of the 15th International Workshop on Data Warehousing and OLAP (DOLAP’12). ACM, New York, 137. DOI:https://doi.org/10.1145/2390045.2390067Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Zixing Zhang, Bin Wu, and Zeao Wang. 2017. A parallel framework for large-scale multidimensional heterogeneous network analysis. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’17). ACM, New York, 625--626. DOI:https://doi.org/10.1145/3110025.3110038Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. 2011. Graph cube: OnWarehousing and OLAP multidimensional networks. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD’11). ACM, New York, 853. DOI:https://doi.org/10.1145/1989323.1989413Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Review on OLAP Technologies Applied to Information Networks

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Knowledge Discovery from Data
            ACM Transactions on Knowledge Discovery from Data  Volume 14, Issue 1
            February 2020
            325 pages
            ISSN:1556-4681
            EISSN:1556-472X
            DOI:10.1145/3375789
            Issue’s Table of Contents

            Copyright © 2019 ACM

            © 2019 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 December 2019
            • Revised: 1 October 2019
            • Accepted: 1 October 2019
            • Received: 1 September 2018
            Published in tkdd Volume 14, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • tutorial
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format