skip to main content
10.1145/3372224.3419207acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Towards quantum belief propagation for LDPC decoding in wireless networks

Published:18 September 2020Publication History

ABSTRACT

We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations.

References

  1. Steven H Adachi and Maxwell P Henderson. 2015. Application of quantum annealing to training of deep neural networks.Google ScholarGoogle Scholar
  2. Alexandru Amaricai and Oana Boncalo. 2017. Design Trade-Offs for FPGA Implementation of LDPC Decoders. In Field, George Dekoulis (Ed.). IntechOpen, Rijeka, Chapter 5, 105. Google ScholarGoogle ScholarCross RefCross Ref
  3. Mohammad H Amin. 2015. Searching for quantum speedup in quasistatic quantum annealers. Physical Review A 92, 5 (2015), 052323.Google ScholarGoogle ScholarCross RefCross Ref
  4. Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut G Katzgraber. 2019. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Frontiers in Physics 7 (2019), 48.Google ScholarGoogle ScholarCross RefCross Ref
  5. Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. 2019. Quantum-inspired algorithms in practice. arXiv:arXiv:1905.10415Google ScholarGoogle Scholar
  6. C. Berrou, A. Glavieux, and P. Thitimajshima. 1993. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In Proceedings of ICC '93 - IEEE International Conference on Communications, Vol. 2. IEEE, Geneva, Switzerland, 1064--1070.Google ScholarGoogle Scholar
  7. Zhengbing Bian, Fabian Chudak, Robert Israel, Brad Lackey, William G Macready, and Aidan Roy. 2014. Discrete optimization using quantum annealing on sparse Ising models. Frontiers in Physics 2 (2014), 56.Google ScholarGoogle ScholarCross RefCross Ref
  8. Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey, William G Macready, and Aidan Roy. 2016. Mapping constrained optimization problems to quantum annealing with application to fault diagnosis. Frontiers in ICT 3 (2016), 14.Google ScholarGoogle ScholarCross RefCross Ref
  9. Zhengbing Bian, Fabian Chudak, William G Macready, and Geordie Rose. 2010. The Ising model: teaching an old problem new tricks.Google ScholarGoogle Scholar
  10. Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker, Daniel A Lidar, John M Martinis, and Matthias Troyer. 2014. Evidence for quantum annealing with more than one hundred qubits. Nature physics 10, 3 (2014), 218--224.Google ScholarGoogle Scholar
  11. CCSDS Blue Book. 2020. Radio Frequency and Modulation Systems-Part 1 Earth Stations and Spacecraft.Google ScholarGoogle Scholar
  12. CCSDS Orange Book. 2014. Erasure Correcting Codes for Use in Near-Earth and Deep-Space Communications.Google ScholarGoogle Scholar
  13. Tomas Boothby, Andrew D King, and Aidan Roy. 2016. Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Information Processing 15, 1 (2016), 495--508.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jun Cai, William G Macready, and Aidan Roy. 2014. A practical heuristic for finding graph minors.Google ScholarGoogle Scholar
  15. A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann. 2015. Cloud RAN for Mobile Networks---A Technology Overview. IEEE Communications Surveys Tutorials 17, 1 (2015), 405--426. Google ScholarGoogle ScholarCross RefCross Ref
  16. Shashi Kiran Chilappagari, Dung Viet Nguyen, Bane Vasic, and Michael W Marcellin. 2008. Girth of the Tanner graph and error correction capability of LDPC codes. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference on. IEEE, IL, USA, 1238--1245.Google ScholarGoogle Scholar
  17. D-Wave Hybrid Solver Service. Website.Google ScholarGoogle Scholar
  18. D-Wave Next-Generation QPU Topology. Website.Google ScholarGoogle Scholar
  19. D-Wave Quantum Processing Unit. Website.Google ScholarGoogle Scholar
  20. D-Wave Systems Technology Information. Website.Google ScholarGoogle Scholar
  21. D-Wave qbsolv embedding tool. Website.Google ScholarGoogle Scholar
  22. D-Wave Virtual Full-Yield Chimera Solver. Website.Google ScholarGoogle Scholar
  23. ETSI. 2009. ETSI Standard EN 302 307: Digital Video Broadcasting; Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2).Google ScholarGoogle Scholar
  24. TS ETSI. 2018. 138 212 V15. 2.0 Technical Specification-5G, NR, Multiplexing and channel coding.Google ScholarGoogle Scholar
  25. Robert Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1 (1962), 21--28.Google ScholarGoogle ScholarCross RefCross Ref
  26. Peter Hailes, Lei Xu, Robert G Maunder, Bashir M Al-Hashimi, and Lajos Hanzo. 2016. A survey of FPGA-based LDPC decoders. IEEE Communications Surveys & Tutorials 18, 2 (2016), 1098--1122.Google ScholarGoogle ScholarCross RefCross Ref
  27. Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. 2011. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Computer Communication Review 41, 1 (2011), 53--53.Google ScholarGoogle Scholar
  28. Kuk-Hyun Han and Jong-Hwan Kim. 2002. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE transactions on evolutionary computation 6, 6 (2002), 580--593.Google ScholarGoogle Scholar
  29. Dale E Hocevar. 2004. A reduced complexity decoder architecture via layered decoding of LDPC codes. In IEEE Workshop on Signal Processing Systems. IEEE, TX, USA, 107--112.Google ScholarGoogle ScholarCross RefCross Ref
  30. IEEE. 2012. IEEE Standard 802.11: Wireless LAN Medium Access and Physical Layer Specifications.Google ScholarGoogle Scholar
  31. IEEE. 2012. IEEE Standard 802.16: Air Interface for Broadband Wireless Access Systems.Google ScholarGoogle Scholar
  32. IEEE. 2012. IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Google ScholarGoogle ScholarCross RefCross Ref
  33. Hirotaka Irie, Haozhao Liang, Shinya Gongyo, Tetsuo Hatsuda, et al. 2020. Hybrid Quantum Annealing via Molecular Dynamics.Google ScholarGoogle Scholar
  34. Hiroshi Ishikawa. 2009. Higher-order clique reduction in binary graph cut. In IEEE CVPR. IEEE, FL, USA, 2993--3000.Google ScholarGoogle Scholar
  35. Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, R Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, et al. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194.Google ScholarGoogle Scholar
  36. Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review E 58, 5 (1998), 5355.Google ScholarGoogle ScholarCross RefCross Ref
  37. Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. 2018. Parallel Programming for FPGAs. arXiv:1805.03648 [cs.AR]Google ScholarGoogle Scholar
  38. Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. 2006. Feedback-optimized parallel tempering Monte Carlo. Journal of Statistical Mechanics: Theory and Experiment 2006, 03 (2006), P03018.Google ScholarGoogle ScholarCross RefCross Ref
  39. Minsung Kim, Davide Venturelli, and Kyle Jamieson. 2019. Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks. In Proceedings of the ACM Special Interest Group on Data Communication (Beijing, China) (SIGCOMM '19). Association for Computing Machinery, New York, NY, USA, 241--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al. 2018. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 7719 (2018), 456.Google ScholarGoogle Scholar
  41. John FC Kingman. 1975. Random discrete distributions. Journal of the Royal Statistical Society: Series B (Methodological) 37, 1 (1975), 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. J. M. Laarhoven and E. H. L. Aarts. 1987. Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Brad Lackey. 2018. A belief propagation algorithm based on domain decomposition.Google ScholarGoogle Scholar
  44. Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. K. Sabhikhi. 2010. Wireless network cloud: Architecture and system requirements. IBM Journal of Research and Development 54, 1 (2010), 4:1--4:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Long Term Price Trends of Computers and Peripherals: U.S. Bureau of Labor Statistics. Website.Google ScholarGoogle Scholar
  46. Jin Lu and Josée MF Moura. 2006. Structured LDPC codes for high-density recording: large girth and low error floor. IEEE transactions on magnetics 42, 2 (2006), 208--213.Google ScholarGoogle Scholar
  47. Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2 (2014), 5. Google ScholarGoogle ScholarCross RefCross Ref
  48. David JC MacKay. 1999. Good error-correcting codes based on very sparse matrices. IEEE Trans. on Information Theory 45, 2 (1999), 399--431.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Grigorii A Margulis. 1982. Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2, 1 (1982), 71--78.Google ScholarGoogle ScholarCross RefCross Ref
  50. S. Matsubara, M. Takatsu, T. Miyazawa, T. Shibasaki, Y. Watanabe, K. Takemoto, and H. Tamura. 2020. Digital Annealer for High-Speed Solving of Combinatorial optimization Problems and Its Applications. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, Beijing, China, 667--672.Google ScholarGoogle Scholar
  51. Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics 18, 2 (2016), 023023.Google ScholarGoogle ScholarCross RefCross Ref
  52. C C McGeoch. 2014. Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis Lectures on Quantum Computing 5, 2 (2014), 1--93.Google ScholarGoogle ScholarCross RefCross Ref
  53. Catherine C. McGeoch and Cong Wang. 2013. Experimental Evaluation of an Adiabiatic Quantum System for Combinatorial Optimization. In Proceedings of the ACM International Conference on Computing Frontiers (Ischia, Italy) (CF '13). Association for Computing Machinery, New York, NY, USA, Article 23, 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Oscar Montiel, Yoshio Rubio, Cynthia Olvera, and Ajelet Rivera. 2019. Quantum-Inspired Acromyrmex Evolutionary Algorithm. Scientific reports 9, 1 (2019), 1--10.Google ScholarGoogle Scholar
  55. Alberto Morello and Vittoria Mignone. 2006. DVB-S2: The second generation standard for satellite broad-band services. Proc. of the IEEE 94, 1 (2006), 210--227.Google ScholarGoogle ScholarCross RefCross Ref
  56. Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spiropulu. 2017. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 7676 (2017), 375--379.Google ScholarGoogle Scholar
  57. A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang. 2002. Stopping sets and the girth of Tanner graphs. In Proceedings IEEE International Symposium on Information Theory,. IEEE, Lausanne, Switzerland, 2.Google ScholarGoogle Scholar
  58. Alejandro Perdomo-Ortiz, Joseph Fluegemann, Sriram Narasimhan, Rupak Biswas, and Vadim N Smelyanskiy. 2015. A quantum annealing approach for fault detection and diagnosis of graph-based systems. The European Physical Journal Special Topics 224, 1 (2015), 131--148.Google ScholarGoogle ScholarCross RefCross Ref
  59. John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (2018), 79.Google ScholarGoogle ScholarCross RefCross Ref
  60. Claude Elwood Shannon. 1948. A mathematical theory of communication. Bell Systems Technical Journal 27, 3 (1948), 379--423.Google ScholarGoogle ScholarCross RefCross Ref
  61. Michael Streif, Florian Neukart, and Martin Leib. 2019. Solving Quantum Chemistry Problems with a D-Wave Quantum Annealer. In Quantum Technology and Optimization Problems, Sebastian Feld and Claudia Linnhoff-Popien (Eds.). Springer International Publishing, Cham, 111--122.Google ScholarGoogle Scholar
  62. Y. Sun, M. Karkooti, and J. R. Cavallaro. 2006. High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architecture for OFDM Systems. In 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. IEEE, TX, USA, 39--42.Google ScholarGoogle Scholar
  63. Karthikeyan Sundaresan. 2013. Cloud-Driven Architectures for next Generation Small Cell Networks. In Proceedings of the Eighth ACM International Workshop on Mobility in the Evolving Internet Architecture (Miami, Florida, USA) (MobiArch '13). Association for Computing Machinery, New York, NY, USA, 3--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Karthikeyan Sundaresan, Mustafa Y. Arslan, Shailendra Singh, Sampath Rangarajan, and Srikanth V. Krishnamurthy. 2016. FluidNet: A Flexible Cloud-based Radio Access Network for Small Cells. IEEE/ACM Trans. on Networking 24, 2 (April 2016), 915--928. Google ScholarGoogle ScholarCross RefCross Ref
  65. Karthikeyan Sundaresan, Mustafa Y. Arslan, Shailendra Singh, Sampath Rangarajan, and Srikanth V. Krishnamurthy. 2016. FluidNet: A Flexible Cloud-Based Radio Access Network for Small Cells. IEEE/ACM Trans. Netw. 24, 2 (April 2016), 915--928.Google ScholarGoogle ScholarCross RefCross Ref
  66. Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K. Fahrmann, Barthelemy Meynard-Piganeau, and Jens Eisert. 2019. Stochastic gradient descent for hybrid quantum-classical optimization. arXiv:1910.01155 [quant-ph]Google ScholarGoogle Scholar
  67. R Tanner. 1981. A recursive approach to low complexity codes. IEEE Transactions on information theory 27, 5 (1981), 533--547.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. J. Teubner, R. Mueller, and G. Alonso. 2010. FPGA acceleration for the frequent item problem. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, CA, USA, 669--680.Google ScholarGoogle ScholarCross RefCross Ref
  69. Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang, Bryan O'Gorman, Davide Venturelli, and J Christopher Beck. 2016. A hybrid quantum-classical approach to solving scheduling problems. In Ninth annual symposium on combinatorial search. AAAI, NY, USA, 98--106.Google ScholarGoogle Scholar
  70. Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O'Gorman, Rupak Biswas, and Vadim Smelyanskiy. 2015. Quantum Optimization of Fully Connected Spin Glasses. Phys. Rev. X 5 (Sep 2015), 031040. Issue 3. Google ScholarGoogle ScholarCross RefCross Ref
  71. Davide Venturelli, Dominic J. J. Marchand, and Galo Rojo. 2015. Quantum Annealing Implementation of Job-Shop Scheduling. arXiv:1506.08479 [quant-ph]Google ScholarGoogle Scholar
  72. Chi Wang, Huo Chen, and Edmond Jonckheere. 2016. Quantum versus simulated annealing in wireless interference network optimization. Scientific reports 6 (2016), 25797.Google ScholarGoogle Scholar
  73. Xilinx UltraScale Architecture User Guide. Website.Google ScholarGoogle Scholar
  74. Xilinx Vivado Design Suite User Guide. Website.Google ScholarGoogle Scholar
  75. Raman Yazdani and Masoud Ardakani. 2011. Efficient LLR calculation for non-binary modulations over fading channels. IEEE transactions on communications 59, 5 (2011), 1236--1241.Google ScholarGoogle Scholar
  76. Jianguang Zhao, Farhad Zarkeshvari, and Amir H Banihashemi. 2005. On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes. IEEE transactions on communications 53, 4 (2005), 549--554.Google ScholarGoogle Scholar
  77. Victor Vasilievich Zyablov and Mark Semenovich Pinsker. 1975. Estimation of the error-correction complexity for Gallager low-density codes. Problemy Peredachi Informatsii 11, 1 (1975), 23--36.Google ScholarGoogle Scholar

Index Terms

  1. Towards quantum belief propagation for LDPC decoding in wireless networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobiCom '20: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking
        April 2020
        621 pages
        ISBN:9781450370851
        DOI:10.1145/3372224

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 September 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate440of2,972submissions,15%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader