skip to main content
research-article
Open Access

TDEFSI: Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information

Authors Info & Claims
Published:29 April 2020Publication History
Skip Abstract Section

Abstract

Influenza-like illness (ILI) places a heavy social and economic burden on our society. Traditionally, ILI surveillance data are updated weekly and provided at a spatially coarse resolution. Producing timely and reliable high-resolution spatiotemporal forecasts for ILI is crucial for local preparedness and optimal interventions. We present Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information (TDEFSI),1 an epidemic forecasting framework that integrates the strengths of deep neural networks and high-resolution simulations of epidemic processes over networks. TDEFSI yields accurate high-resolution spatiotemporal forecasts using low-resolution time-series data.

During the training phase, TDEFSI uses high-resolution simulations of epidemics that explicitly model spatial and social heterogeneity inherent in urban regions as one component of training data. We train a two-branch recurrent neural network model to take both within-season and between-season low-resolution observations as features and output high-resolution detailed forecasts. The resulting forecasts are not just driven by observed data but also capture the intricate social, demographic, and geographic attributes of specific urban regions and mathematical theories of disease propagation over networks.

We focus on forecasting the incidence of ILI and evaluate TDEFSI’s performance using synthetic and real-world testing datasets at the state and county levels in the USA. The results show that, at the state level, our method achieves comparable/better performance than several state-of-the-art methods. At the county level, TDEFSI outperforms the other methods. The proposed method can be applied to other infectious diseases as well.

References

  1. ACS. 2009-2013. 2009-2013 5-Year American Community Survey Commuting Flows. Retrieved from https://www.census.gov/data/tables/time-series/demo/commuting/commuting-flows.html.Google ScholarGoogle Scholar
  2. AHRQ. 2017. Hospital Visits for a Population. Retrieved June 1, 2017 from https://www.ahrq.gov/data/resources/index.html.Google ScholarGoogle Scholar
  3. Ali Alessa and Miad Faezipour. 2018. A review of influenza detection and prediction through social networking sites. Theor. Biol. Med. Model. 15, 1 (2018), 2.Google ScholarGoogle ScholarCross RefCross Ref
  4. Norman T. J. Bailey et al. 1975. The Mathematical Theory of Infectious Diseases and Its Applications (2nd ed.). Charles Griffin 8 Company Ltd 5a, High Wycombe, Bucks, UK.Google ScholarGoogle Scholar
  5. Batuhan Bardak and Mehmet Tan. 2015. Prediction of influenza outbreaks by integrating Wikipedia article access logs and Google flu trend data. In Proceedings of the 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE’15). IEEE, 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Christopher L. Barrett, Richard J. Beckman, Maleq Khan, V. S. Anil Kumar, Madhav V. Marathe, Paula E. Stretz, Tridib Dutta, and Bryan Lewis. 2009. Generation and analysis of large synthetic social contact networks. In Proceedings of the Winter Simulation Conference. 1003--1014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Richard Beckman, Keith R. Bisset, Jiangzhuo Chen, Bryan Lewis, Madhav Marathe, and Paula Stretz. 2014. Isis: A networked-epidemiology based pervasive web app for infectious disease pandemic planning and response. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1847--1856.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Richard J. Beckman, Keith A. Baggerly, and Michael D. McKay. 1996. Creating synthetic baseline populations. Transport. Res. A 30, 6 (1996), 415--429.Google ScholarGoogle Scholar
  9. Michael A. Benjamin, Robert A. Rigby, and D. Mikis Stasinopoulos. 2003. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98, 461 (2003), 214--223.Google ScholarGoogle ScholarCross RefCross Ref
  10. Christoph Bergmeir, Rob J. Hyndman, and José M. Benítez. 2016. Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. Int. J. Forecast. 32, 2 (2016), 303--312.Google ScholarGoogle ScholarCross RefCross Ref
  11. Matthew Biggerstaff, David Alper, Mark Dredze, Spencer Fox, Isaac Chun-Hai Fung, Kyle S Hickmann, Bryan Lewis, Roni Rosenfeld, Jeffrey Shaman, Ming-Hsiang Tsou, et al. 2016. Results from the centers for disease control and prevention’s predict the 2013-2014 Influenza Season Challenge. BMC Infect. Dis. 16, 1 (2016), 357.Google ScholarGoogle ScholarCross RefCross Ref
  12. Matthew Biggerstaff, Michael Johansson, David Alper, Logan C. Brooks, Prithwish Chakraborty, David C. Farrow, Sangwon Hyun, Sasikiran Kandula, Craig McGowan, Naren Ramakrishnan, et al. 2018. Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics 24, 2018 (2018), 26--33.Google ScholarGoogle ScholarCross RefCross Ref
  13. Keith Bisset and Madhav Marathe. 2009. A cyber-environment to support pandemic planning and response. DOE SciDAC Mag. 13 (2009), 36--47.Google ScholarGoogle Scholar
  14. Keith R. Bisset, Jiangzhuo Chen, Xizhou Feng, V. S. Anil Kumar, and Madhav V. Marathe. 2009. EpiFast: A fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the 23rd International Conference on Supercomputing. ACM, 430--439.Google ScholarGoogle Scholar
  15. Dirk Brockmann and Dirk Helbing. 2013. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 6164 (2013), 1337--1342.Google ScholarGoogle Scholar
  16. Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, and Roni Rosenfeld. 2018. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS Comput. Biol. 14, 6 (2018), e1006134.Google ScholarGoogle ScholarCross RefCross Ref
  17. Bureau of Labor Statistics. 2017. American Time Use Survey. Retrieved from https://www.bls.gov/tus/.Google ScholarGoogle Scholar
  18. CDC. 2018. Historical Seasonal Influenza Vaccine Schedule. Retrieved June 01, 2018 from https://www.cdc.gov/flu/professionals/vaccination/vaccinesupply.htm.Google ScholarGoogle Scholar
  19. CDC. 2019. Disease Burden of Influenza. Retrieved April 01, 2019 from https://www.cdc.gov/flu/about/disease/burden.htm.Google ScholarGoogle Scholar
  20. CDC. 2019. Fluview Interactive. Retrieved April 20, 2019 from https://www.cdc.gov/flu/weekly/fluviewinteractive.htm.Google ScholarGoogle Scholar
  21. CDO. 2018. Climate Data Online. Retrived August 28, 2018 from https://www.ncdc.noaa.gov/cdo-web/datasets.Google ScholarGoogle Scholar
  22. Dennis L. Chao, M. Elizabeth Halloran, Valerie J. Obenchain, and Ira M. Longini Jr. 2010. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6, 1 (2010), e1000656.Google ScholarGoogle ScholarCross RefCross Ref
  23. Jean-Paul Chretien, Dylan George, Jeffrey Shaman, Rohit A. Chitale, and F. Ellis McKenzie. 2014. Influenza forecasting in human populations: A scoping review. PLoS ONE 9, 4 (2014), e94130.Google ScholarGoogle ScholarCross RefCross Ref
  24. Zhicheng Cui, Wenlin Chen, and Yixin Chen. 2016. Multi-scale convolutional neural networks for time series classification. arXiv preprint arXiv:1603.06995 (2016).Google ScholarGoogle Scholar
  25. Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning. 2019. Graph message passing with cross-location attentions for long-term ILI prediction. arXiv preprint arXiv:1912.10202 (2019).Google ScholarGoogle Scholar
  26. DOH. 2019. ILI Weekly Reports. Retrieved April 20, 2019 from http://www.nj.gov/health/cd/statistics/flu-stats/.Google ScholarGoogle Scholar
  27. Colin Doms, Sarah C. Kramer, and Jeffrey Shaman. 2018. Assessing the use of influenza forecasts and epidemiological modeling in public health decision making in the United States. Sci. Rep. 8, 1 (2018), 12406.Google ScholarGoogle ScholarCross RefCross Ref
  28. Andrea Freyer Dugas, Mehdi Jalalpour, Yulia Gel, Scott Levin, Fred Torcaso, Takeru Igusa, and Richard E. Rothman. 2013. Influenza forecasting with Google flu trends. PLoS ONE 8, 2 (2013), e56176.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ceyhun Eksin, Keith Paarporn, and Joshua S. Weitz. 2019. Systematic biases in disease forecasting-the role of behavior change. Epidemics 27, (2019), 96--105.Google ScholarGoogle Scholar
  30. Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429, 6988 (2004), 180--184.Google ScholarGoogle Scholar
  31. James Faghmous, Hung Nguyen, Matthew Le, and Vipin Kumar. 2014. Spatio-temporal consistency as a means to identify unlabeled objects in a continuous data field. In Proceedings of the AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  32. Christopher C. Fischer, Kevin J. Tibbetts, Dane Morgan, and Gerbrand Ceder. 2006. Predicting crystal structure by merging data mining with quantum mechanics. Nature Mater. 5, 8 (Jul. 2006), 641.Google ScholarGoogle ScholarCross RefCross Ref
  33. Antoine Flahault, Elisabeta Vergu, Laurent Coudeville, and Rebecca F. Grais. 2006. Strategies for containing a global influenza pandemic. Vaccine 24, 44 (2006), 6751--6755.Google ScholarGoogle ScholarCross RefCross Ref
  34. Germain Forestier, François Petitjean, Hoang Anh Dau, Geoffrey I. Webb, and Eamonn Keogh. 2017. Generating synthetic time series to augment sparse datasets. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM’17). IEEE, 865--870.Google ScholarGoogle ScholarCross RefCross Ref
  35. Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning. 1050--1059.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. GHT. 2018. Google Health Trends. Retrieved August 28, 2018 from https://trends.google.com/trends.Google ScholarGoogle Scholar
  37. Edward Goldstein, Sarah Cobey, Saki Takahashi, Joel C. Miller, and Marc Lipsitch. 2011. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: A statistical method. PLoS Med. 8, 7 (2011), e1001051.Google ScholarGoogle ScholarCross RefCross Ref
  38. Google. 2018. Google Correlate Data. Retrieved August 28, 2018 from https://www.google.com/trends/correlate.Google ScholarGoogle Scholar
  39. Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R Venkatesh Babu. 2017. Deligan: Generative adversarial networks for diverse and limited data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 166--174.Google ScholarGoogle ScholarCross RefCross Ref
  40. Geoffroy Hautier, Christopher C. Fischer, Anubhav Jain, Tim Mueller, and Gerbrand Ceder. 2010. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 12 (2010), 3762--3767.Google ScholarGoogle ScholarCross RefCross Ref
  41. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735--1780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ting Hua, Chandan K. Reddy, Lei Zhang, Lijing Wang, Liang Zhao, Chang-Tien Lu, and Naren Ramakrishnan. 2018. Social media based simulation models for understanding disease dynamics. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). International Joint Conferences on Artificial Intelligence Organization, 3797--3804.Google ScholarGoogle ScholarCross RefCross Ref
  43. IndexMundi. 2010. New Jersey Facts. Retrieved March 1, 2019 from https://www.indexmundi.com/facts/united-states/quick-facts/new-jersey/.Google ScholarGoogle Scholar
  44. Sasikiran Kandula and Jeffrey Shaman. 2019. Near-term forecasts of influenza-like illness: An evaluation of autoregressive time series approaches. Epidemics 27 (2019), 41--51.Google ScholarGoogle ScholarCross RefCross Ref
  45. Sasikiran Kandula, Teresa Yamana, Sen Pei, Wan Yang, Haruka Morita, and Jeffrey Shaman. 2018. Evaluation of mechanistic and statistical methods in forecasting influenza-like illness. J. Roy. Soc. Interface 15, 144 (2018), 20180174.Google ScholarGoogle ScholarCross RefCross Ref
  46. Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee, Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. 2017. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 10 (2017), 2318--2331.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jaya Kawale, Stefan Liess, Arjun Kumar, Michael Steinbach, Peter Snyder, Vipin Kumar, Auroop R. Ganguly, Nagiza F. Samatova, and Fredrick Semazzi. 2013. A graph-based approach to find teleconnections in climate data. Stat. Anal. Data Min. 6, 3 (2013), 158--179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Ankush Khandelwal, Anuj Karpatne, Miriam E. Marlier, Jongyoun Kim, Dennis P. Lettenmaier, and Vipin Kumar. 2017. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data. Remote Sens. Environ. 202 (2017), 113--128.Google ScholarGoogle ScholarCross RefCross Ref
  49. Ankush Khandelwal, Varun Mithal, and Vipin Kumar. 2015. Post classification label refinement using implicit ordering constraint among data instances. In Proceedings of the 2015 IEEE International Conference on Data Mining. IEEE, 799--804.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  51. Mario Michael Krell, Anett Seeland, and Su Kyoung Kim. 2018. Data augmentation for brain-computer interfaces: Analysis on event-related potentials data. arXiv preprint arXiv:1801.02730 (2018).Google ScholarGoogle Scholar
  52. Yu A. Kuznetsov and Carlo Piccardi. 1994. Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 2 (1994), 109--121.Google ScholarGoogle ScholarCross RefCross Ref
  53. Håvard Kvamme, Nikolai Sellereite, Kjersti Aas, and Steffen Sjursen. 2018. Predicting mortgage default using convolutional neural networks. Expert Syst. Appl. 102 (2018), 207--217.Google ScholarGoogle ScholarCross RefCross Ref
  54. Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. 2016. Data augmentation for time series classification using convolutional neural networks. In ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva Del Garda, Italy.Google ScholarGoogle Scholar
  55. Jung Min Lee, Donghoon Choi, Giphil Cho, and Yongkuk Kim. 2012. The effect of public health interventions on the spread of influenza among cities. J. Theor. Biol. 293 (2012), 131--142.Google ScholarGoogle ScholarCross RefCross Ref
  56. Ira M. Longini Jr., Paul E. M. Fine, and Stephen B. Thacker. 1986. Predicting the global spread of new infectious agents. Am. J. Epidemiol. 123, 3 (1986), 383--391.Google ScholarGoogle ScholarCross RefCross Ref
  57. Markku Löytönen and Sonia I. Arbona. 1996. Forecasting the AIDS epidemic in Puerto Rico. Soc. Sci. Med. 42, 7 (1996), 997--1010.Google ScholarGoogle ScholarCross RefCross Ref
  58. Antonella Lunelli, Andrea Pugliese, and Caterina Rizzo. 2009. Epidemic patch models applied to pandemic influenza: Contact matrix, stochasticity, robustness of predictions. Math. Biosci. 220, 1 (2009), 24--33.Google ScholarGoogle ScholarCross RefCross Ref
  59. Achla Marathe, Bryan Lewis, Jiangzhuo Chen, and Stephen Eubank. 2011. Sensitivity of household transmission to household contact structure and size. PLoS ONE 6, 8 (Aug. 2011).Google ScholarGoogle ScholarCross RefCross Ref
  60. Marco Marchesi. 2017. Megapixel size image creation using generative adversarial networks. arXiv preprint arXiv:1706.00082 (2017).Google ScholarGoogle Scholar
  61. Craig J. McGowan, Matthew Biggerstaff, Michael Johansson, Karyn M. Apfeldorf, Michal Ben-Nun, Logan Brooks, Matteo Convertino, Madhav Erraguntla, David C. Farrow, John Freeze, et al. 2019. Collaborative efforts to forecast seasonal influenza in the United States, 2015--2016. Sci. Rep. 9, 1 (2019), 683.Google ScholarGoogle Scholar
  62. Noelle-Angelique M. Molinari, Ismael R. Ortega-Sanchez, Mark L. Messonnier, William W. Thompson, Pascale M. Wortley, Eric Weintraub, and Carolyn B. Bridges. 2007. The annual impact of seasonal influenza in the US: Measuring disease burden and costs. Vaccine 25, 27 (2007), 5086--5096.Google ScholarGoogle ScholarCross RefCross Ref
  63. Haruka Morita, Sarah Kramer, Alexandra Heaney, Harold Gil, and Jeffrey Shaman. 2018. Influenza forecast optimization when using different surveillance data types and geographic scale. Influenza Other Respir. Virus. 12, 6 (2018), 755--764.Google ScholarGoogle ScholarCross RefCross Ref
  64. NDSSL. 2014. Synthetic Data of Montgomery County, Virginia. Retrieved from http://ndssl.vbi.vt.edu/synthetic-data/.Google ScholarGoogle Scholar
  65. John A. Nelder and Roger Mead. 1965. A simplex method for function minimization. Comput. J. 7, 4 (1965), 308--313.Google ScholarGoogle ScholarCross RefCross Ref
  66. Elaine Nsoesie, Madhav Mararthe, and John Brownstein. 2013. Forecasting peaks of seasonal influenza epidemics. PLoS Curr. 5 (2013).Google ScholarGoogle Scholar
  67. Elaine O. Nsoesie, Richard J. Beckman, Sara Shashaani, Kalyani S. Nagaraj, and Madhav V. Marathe. 2013. A simulation optimization approach to epidemic forecasting. PLoS ONE 8, 6 (2013), e67164.Google ScholarGoogle ScholarCross RefCross Ref
  68. Elaine O. Nsoesie, John S. Brownstein, Naren Ramakrishnan, and Madhav V. Marathe. 2014. A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza Other Respir. Virus. 8, 3 (2014), 309--316.Google ScholarGoogle ScholarCross RefCross Ref
  69. Dave Osthus, James Gattiker, Reid Priedhorsky, Sara Y. Del Valle, et al. 2019. Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy (with discussion). Bayes. Anal. 14, 1 (2019), 261--312.Google ScholarGoogle ScholarCross RefCross Ref
  70. Jon Parker and Joshua M. Epstein. 2011. A distributed platform for global-scale agent-based models of disease transmission. ACM Trans. Model. Comput. Simul. 22, 1, Article 2 (Dec. 2011), 25 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Sen Pei, Sasikiran Kandula, Wan Yang, and Jeffrey Shaman. 2018. Forecasting the spatial transmission of influenza in the United States. Proc. Natl. Acad. Sci. U.S.A. 115, 11 (2018), 2752--2757.Google ScholarGoogle ScholarCross RefCross Ref
  72. Luis Perez and Jason Wang. 2017. The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017).Google ScholarGoogle Scholar
  73. Nicholas G. Reich, Logan C. Brooks, Spencer J. Fox, Sasikiran Kandula, Craig J. McGowan, Evan Moore, Dave Osthus, Evan L. Ray, Abhinav Tushar, Teresa K. Yamana, Matthew Biggerstaff, Michael A. Johansson, Roni Rosenfeld, and Jeffrey Shaman. 2019. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proc. Natl. Acad. Sci. U.S.A. 116, 8 (2019), 3146--3154. DOI:https://doi.org/10.1073/pnas.1812594116 arXiv:https://www.pnas.org/content/116/8/3146.full.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  74. Hamada Rizk, Ahmed Shokry, and Moustafa Youssef. 2019. Effectiveness of data augmentation in cellular-based localization using deep learning. arXiv preprint arXiv:1906.08171 (2019).Google ScholarGoogle Scholar
  75. Jan Schlüter and Thomas Grill. 2015. Exploring data augmentation for improved singing voice detection with neural networks. In Proceedings of the Annual Conference of the International Society for Music Information Retrieval (ISMIR’15). 121--126.Google ScholarGoogle Scholar
  76. Jeffrey Shaman and Alicia Karspeck. 2012. Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences 109, 50 (2012), 20425--20430.Google ScholarGoogle ScholarCross RefCross Ref
  77. Jeffrey Shaman, Alicia Karspeck, Wan Yang, James Tamerius, and Marc Lipsitch. 2013. Real-time influenza forecasts during the 2012-2013 season. Nature Commun. 4, 2837 (2013).Google ScholarGoogle Scholar
  78. Thinglink. 2019. New Jersey Regions Map. Retrieved from https://www.thinglink.com/scene/788830737167024130.Google ScholarGoogle Scholar
  79. Ashleigh R. Tuite, Amy L. Greer, Michael Whelan, Anne-Luise Winter, Brenda Lee, Ping Yan, Jianhong Wu, Seyed Moghadas, David Buckeridge, Babak Pourbohloul, et al. 2010. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Can. Med. Assoc. J. 182, 2 (2010), 131--136.Google ScholarGoogle ScholarCross RefCross Ref
  80. Terry Taewoong Um, Franz Michael Josef Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban Fietzek, and Dana Kulić. 2017. Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. arXiv preprint arXiv:1706.00527 (2017).Google ScholarGoogle Scholar
  81. Cristina Nader Vasconcelos and Bárbara Nader Vasconcelos. 2017. Increasing deep learning melanoma classification by classical and expert knowledge based image transforms. CoRR, abs/1702.07025 1 (2017).Google ScholarGoogle Scholar
  82. Siva R. Venna, Amirhossein Tavanaei, Raju N. Gottumukkala, Vijay V. Raghavan, Anthony S. Maida, and Stephen Nichols. 2019. A novel data-driven model for real-time influenza forecasting. IEEE Access 7 (2019), 7691--7701.Google ScholarGoogle ScholarCross RefCross Ref
  83. Cécile Viboud, Pierre-Yves Boëlle, Fabrice Carrat, Alain-Jacques Valleron, and Antoine Flahault. 2003. Prediction of the spread of influenza epidemics by the method of analogues. Am. J. Epidemiol. 158, 10 (2003), 996--1006.Google ScholarGoogle ScholarCross RefCross Ref
  84. Cécile Viboud, Kaiyuan Sun, Robert Gaffey, Marco Ajelli, Laura Fumanelli, Stefano Merler, Qian Zhang, Gerardo Chowell, Lone Simonsen, Alessandro Vespignani, et al. 2018. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics 22 (2018), 13--21.Google ScholarGoogle ScholarCross RefCross Ref
  85. Svitlana Volkova, Ellyn Ayton, Katherine Porterfield, and Courtney D. Corley. 2017. Forecasting influenza-like illness dynamics for military populations using neural networks and social media. PLoS ONE 12, 12 (2017), e0188941.Google ScholarGoogle ScholarCross RefCross Ref
  86. Lijing Wang, Jiangzhuo Chen, and Achla Marathe. 2018. A framework for discovering health disparities among cohorts in an influenza epidemic. World Wide Web 22, 6 (2018), 2997--3020.Google ScholarGoogle ScholarCross RefCross Ref
  87. Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. 2019. DEFSI: Deep learning based epidemic forecasting with synthetic information. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 9607--9612.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. 2019. TDEFSI: Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic Information (Supplement). Retrieved from https://github.com/christa60/defsi/blob/master/animation.gif.Google ScholarGoogle Scholar
  89. Zheng Wang, Prithwish Chakraborty, Sumiko R. Mekaru, John S. Brownstein, Jieping Ye, and Naren Ramakrishnan. 2015. Dynamic poisson autoregression for influenza-like-illness case count prediction. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1285--1294.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. WHO. 2019. Seasonal Influenza. Retrieved April 1, 2019 from http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).Google ScholarGoogle Scholar
  91. Ken C. L. Wong, Linwei Wang, and Pengcheng Shi. 2009. Active model with orthotropic hyperelastic material for cardiac image analysis. In Proceedings of the International Conference on Functional Imaging and Modeling of the Heart. Springer, 229--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Sebastien C. Wong, Adam Gatt, Victor Stamatescu, and Mark D. McDonnell. 2016. Understanding data augmentation for classification: When to warp? In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA’16). IEEE, 1--6.Google ScholarGoogle Scholar
  93. Yuexin Wu, Yiming Yang, Hiroshi Nishiura, and Masaya Saitoh. 2018. Deep learning for epidemiological predictions. In Proceedings of the 41st International ACM SIGIR Conference on Research 8 Development in Information Retrieval. ACM, 1085--1088.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Jingjia Xu, John L. Sapp, Azar Rahimi Dehaghani, Fei Gao, Milan Horacek, and Linwei Wang. 2015. Robust transmural electrophysiological imaging: Integrating sparse and dynamic physiological models into ECG-based inference. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI’15), Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro Frangi (Eds.). Springer International Publishing, Cham, 519--527.Google ScholarGoogle ScholarCross RefCross Ref
  95. Qinneng Xu, Yulia R. Gel, L. Leticia Ramirez Ramirez, Kusha Nezafati, Qingpeng Zhang, and Kwok-Leung Tsui. 2017. Forecasting influenza in Hong Kong with Google search queries and statistical model fusion. PloS ONE 12, 5 (2017), e0176690.Google ScholarGoogle ScholarCross RefCross Ref
  96. Shihao Yang, Mauricio Santillana, John S. Brownstein, Josh Gray, Stewart Richardson, and S. C. Kou. 2017. Using electronic health records and Internet search information for accurate influenza forecasting. BMC Infect. Dis. 17, 1 (2017), 332.Google ScholarGoogle ScholarCross RefCross Ref
  97. Shihao Yang, Mauricio Santillana, and Samuel C. Kou. 2015. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc. Natl. Acad. Sci. U.S.A. 112, 47 (2015), 14473--14478.Google ScholarGoogle ScholarCross RefCross Ref
  98. Wan Yang, Alicia Karspeck, and Jeffrey Shaman. 2014. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput. Biol. 10, 4 (2014), e1003583.Google ScholarGoogle ScholarCross RefCross Ref
  99. Wan Yang, Marc Lipsitch, and Jeffrey Shaman. 2015. Inference of seasonal and pandemic influenza transmission dynamics. Proc. Natl. Acad. Sci. U.S.A. 112, 9 (2015), 2723--2728.Google ScholarGoogle ScholarCross RefCross Ref
  100. Wan Yang, Donald R. Olson, and Jeffrey Shaman. 2016. Forecasting influenza outbreaks in boroughs and neighborhoods of New York City. PLoS Comput. Biol. 12, 11 (2016), e1005201.Google ScholarGoogle ScholarCross RefCross Ref
  101. Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2016. Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016).Google ScholarGoogle Scholar
  102. Liang Zhao, Jiangzhuo Chen, Feng Chen, Wei Wang, Chang-Tien Lu, and Naren Ramakrishnan. 2015. Simnest: Social media nested epidemic simulation via online semi-supervised deep learning. In Proceedings of the 2015 IEEE International Conference on Data Mining. IEEE, 639--648.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision. 2223--2232.Google ScholarGoogle Scholar

Index Terms

  1. TDEFSI: Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Spatial Algorithms and Systems
          ACM Transactions on Spatial Algorithms and Systems  Volume 6, Issue 3
          Special Issue on Deep Learning for Spatial Algorithms and Systems
          September 2020
          171 pages
          ISSN:2374-0353
          EISSN:2374-0361
          DOI:10.1145/3394669
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 29 April 2020
          • Accepted: 1 January 2020
          • Revised: 1 September 2019
          • Received: 1 May 2019
          Published in tsas Volume 6, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format