skip to main content
research-article

Planar Graphs Have Bounded Queue-Number

Published:06 August 2020Publication History
Skip Abstract Section

Abstract

We show that planar graphs have bounded queue-number, thus proving a conjecture of Heath et al. [66] from 1992. The key to the proof is a new structural tool called layered partitions, and the result that every planar graph has a vertex-partition and a layering, such that each part has a bounded number of vertices in each layer, and the quotient graph has bounded treewidth. This result generalises for graphs of bounded Euler genus. Moreover, we prove that every graph in a minor-closed class has such a layered partition if and only if the class excludes some apex graph. Building on this work and using the graph minor structure theorem, we prove that every proper minor-closed class of graphs has bounded queue-number.

Layered partitions have strong connections to other topics, including the following two examples. First, they can be interpreted in terms of strong products. We show that every planar graph is a subgraph of the strong product of a path with some graph of bounded treewidth. Similar statements hold for all proper minor-closed classes. Second, we give a simple proof of the result by DeVos et al. [31] that graphs in a proper minor-closed class have low treewidth colourings.

References

  1. Martin Aigner and Günter M. Ziegler. 2010. Proofs from the Book (4th ed.). Springer.Google ScholarGoogle Scholar
  2. Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey Pupyrev. 2018. Queue layouts of planar 3-trees. In Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) (Lecture Notes in Computer Science), Therese C. Biedl and Andreas Kerren (Eds.), vol. 11282. Springer, 213–226. DOI:https://doi.org/10.1007/978-3-030-04414-5_15Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey Pupyrev. 2020. Queue layouts of planar 3-trees. Algorithmica (2020). DOI:https://doi.org/10.1007/s00453-020-00697-4Google ScholarGoogle Scholar
  4. Noga Alon and Vera Asodi. 2002. Sparse universal graphs. J. Comput. Appl. Math. 142, 1 (2002), 1–11. DOI:https://doi.org/10.1016/S0377-0427(01)00455-1 MR: 1910514.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Noga Alon and Michael Capalbo. 2007. Sparse universal graphs for bounded-degree graphs. Random Structures Algorithms 31, 2 (2007), 123–133. DOI:https://doi.org/10.1002/rsa.20143Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Noga Alon, Jarosław Grytczuk, Mariusz Hałuszczak, and Oliver Riordan. 2002. Nonrepetitive colorings of graphs. Random Structures Algorithms 21, 3–4 (2002), 336–346. DOI:https://doi.org/10.1002/rsa.10057 MR: 1945373.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Noga Alon, Bojan Mohar, and Daniel P. Sanders. 1996. On acyclic colorings of graphs on surfaces. Israel J. Math. 94 (1996), 273–283. DOI:https://doi.org/10.1007/BF02762708Google ScholarGoogle ScholarCross RefCross Ref
  8. Thomas Andreae. 1986. On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory, Ser. B 41, 1 (1986), 37–47. DOI:https://doi.org/10.1016/0095-8956(86)90026-2 MR: 0854602.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. László Babai, Fan R. K. Chung, Paul Erdős, Ron L. Graham, and Joel H. Spencer. 1982. On graphs which contain all sparse graphs. In Theory and Practice of Combinatorics. North-Holland Math. Stud., Vol. 60. 21–26. MR: 806964.Google ScholarGoogle ScholarCross RefCross Ref
  10. Brenda S. Baker. 1994. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 1 (1994), 153–180. DOI:https://doi.org/10.1145/174644.174650 MR: 1369197.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Michael J. Bannister, William E. Devanny, Vida Dujmović, David Eppstein, and David R. Wood. 2019. Track layouts, layered path decompositions, and leveled planarity. Algorithmica 81, 4 (2019), 1561–1583. DOI:https://doi.org/10.1007/s00453-018-0487-5 MR: 3936168.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Michael A. Bekos, Henry Förster, Martin Gronemann, Tamara Mchedlidze, Fabrizio Montecchiani, Chrysanthi N. Raftopoulou, and Torsten Ueckerdt. 2019. Planar graphs of bounded degree have bounded queue number. SIAM J. Comput. 48, 5 (2019), 1487–1502. DOI:https://doi.org/10.1137/19M125340XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  13. Sandeep N. Bhatt, Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. 1989. Universal graphs for bounded-degree trees and planar graphs. SIAM J. Discrete Math. 2, 2 (1989), 145–155. DOI:https://doi.org/10.1137/0402014 MR: 990447.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hans L. Bodlaender. 1998. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1-2 (1998), 1–45. DOI:https://doi.org/10.1016/S0304-3975(97)00228-4 MR: 1647486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hans L. Bodlaender and Joost Engelfriet. 1997. Domino treewidth. J. Algorithms 24, 1 (1997), 94–123. DOI:https://doi.org/10.1006/jagm.1996.0854 MR: 1453952.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. 2020. Shorter labeling schemes for planar graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’20), Shuchi Chawla (Ed.). 446–462. DOI:https://doi.org/10.1137/1.9781611975994.27 arXiv: 1908.03341.Google ScholarGoogle ScholarCross RefCross Ref
  17. Oleg V. Borodin. 1979. On acyclic colorings of planar graphs. Discrete Math. 25, 3 (1979), 211–236. DOI:https://doi.org/10.1016/0012-365X(79)90077-3Google ScholarGoogle ScholarCross RefCross Ref
  18. Oleg V. Borodin, Alexandr V. Kostochka, Jaroslav Nešetřil, André Raspaud, and Éric Sopena. 1998. On universal graphs for planar oriented graphs of a given girth. Discrete Math. 188, 1–3 (1998), 73–85. DOI:https://doi.org/10.1016/S0012-365X(97)00276-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Julia Böttcher, Klaas Paul Pruessmann, Anusch Taraz, and Andreas Würfl. 2010. Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs. European J. Combin. 31, 5 (2010), 1217–1227. DOI:https://doi.org/10.1016/j.ejc.2009.10.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jonathan F. Buss and Peter Shor. 1984. On the pagenumber of planar graphs. In Proceedings of the 16th ACM Symposium. on Theory of Computing (STOC’84). ACM, 98–100. DOI:https://doi.org/10.1145/800057.808670Google ScholarGoogle Scholar
  21. Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. 2012. Algorithms for the edge-width of an embedded graph. Comput. Geom. 45, 5--6 (2012), 215–224. DOI:https://doi.org/10.1016/j.comgeo.2011.12.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Sunil Chandran, Alexandr Kostochka, and J. Krishnam Raju. 2008. Hadwiger number and the Cartesian product of graphs. Graphs Combin. 24, 4 (2008), 291–301. DOI:https://doi.org/10.1007/s00373-008-0795-7Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Zhi-Zhong Chen. 2001. Approximation algorithms for independent sets in map graphs. J. Algorithms 41, 1 (2001), 20–40. DOI:https://doi.org/10.1006/jagm.2001.1178Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Zhi-Zhong Chen. 2007. New bounds on the edge number of a k-map graph. J. Graph Theory 55, 4 (2007), 267–290. DOI:https://doi.org/10.1002/jgt.20237 MR: 2336801.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. 2002. Map graphs. J. ACM 49, 2 (2002), 127–138. DOI:https://doi.org/10.1145/506147.506148 MR: 2147819.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Robert F. Cohen, Peter Eades, Tao Lin, and Frank Ruskey. 1996. Three-dimensional graph drawing. Algorithmica 17, 2 (1996), 199–208. DOI:https://doi.org/10.1007/BF02522826Google ScholarGoogle ScholarCross RefCross Ref
  27. Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1, 1 (2005), 33–47. DOI:https://doi.org/10.1145/1077464.1077468Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Erik D. Demaine and MohammadTaghi Hajiaghayi. 2004. Diameter and treewidth in minor-closed graph families, revisited. Algorithmica 40, 3 (2004), 211–215. DOI:https://doi.org/10.1007/s00453-004-1106-1 MR: 2080518.Google ScholarGoogle ScholarCross RefCross Ref
  29. Erik D. Demaine and MohammadTaghi Hajiaghayi. 2004. Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04). SIAM, 840–849. http://dl.acm.org/citation.cfm?id=982792.982919.Google ScholarGoogle Scholar
  30. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. 2005. Algorithmic graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). IEEE, 637–646. DOI:https://doi.org/10.1109/SFCS.2005.14Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul Seymour, and Dirk Vertigan. 2004. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Combin. Theory Ser. B 91, 1 (2004), 25–41. DOI:https://doi.org/10.1016/j.jctb.2003.09.001 MR: 2047529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Giuseppe Di Battista, Fabrizio Frati, and János Pach. 2013. On the queue number of planar graphs. SIAM J. Comput. 42, 6 (2013), 2243–2285. DOI:https://doi.org/10.1137/130908051 MR: 3141759.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Emilio Di Giacomo and Henk Meijer. 2004. Track drawings of graphs with constant queue number. In Proceedings of the 11th International Symposium on Graph Drawing (GD’03) (Lecture Notes in Computer Science), Giuseppe Liotta (Ed.), Vol. 2912. Springer, 214–225. DOI:https://doi.org/10.1007/978-3-540-24595-7_20Google ScholarGoogle ScholarCross RefCross Ref
  34. Reinhard Diestel. 2018. Graph Theory (5th ed.). Graduate Texts in Mathematics, Vol. 173. Springer. MR: 3822066.Google ScholarGoogle Scholar
  35. Reinhard Diestel and Daniela Kühn. 2005. Graph minor hierarchies. Discrete Appl. Math. 145, 2 (2005), 167–182. DOI:https://doi.org/10.1016/j.dam.2004.01.010Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Guoli Ding and Bogdan Oporowski. 1995. Some results on tree decomposition of graphs. J. Graph Theory 20, 4 (1995), 481–499. DOI:https://doi.org/10.1002/jgt.3190200412 MR: 1358539.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Guoli Ding and Bogdan Oporowski. 1996. On tree-partitions of graphs. Discrete Math. 149, 1–3 (1996), 45–58. DOI:https://doi.org/10.1016/0012-365X(94)00337-I MR: 1375097.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, and Dirk Vertigan. 1998. Partitioning graphs of bounded tree-width. Combinatorica 18, 1 (1998), 1–12. DOI:https://doi.org/10.1007/s004930050001 MR: 1645638.Google ScholarGoogle ScholarCross RefCross Ref
  39. Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, and Dirk Vertigan. 2000. Surfaces, tree-width, clique-minors, and partitions. J. Combin. Theory Ser. B 79, 2 (2000), 221–246. DOI:https://doi.org/10.1006/jctb.2000.1962 MR: 1769192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Michał Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. 2020. Improved bounds for centered colorings. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’20), Shuchi Chawla (Ed.). 2212–2226. DOI:https://doi.org/10.1137/1.9781611975994.136 arXiv: 1907.04586.Google ScholarGoogle ScholarCross RefCross Ref
  41. Vida Dujmović. 2015. Graph layouts via layered separators. J. Combin. Theory Series B. 110 (2015), 79–89. DOI:https://doi.org/10.1016/j.jctb.2014.07.005 MR: 3279388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vida Dujmović, David Eppstein, Gwenaël Joret, Pat Morin, and David R. Wood. 2018. Minor-closed graph classes with bounded layered pathwidth. arXiv: 1810.08314.Google ScholarGoogle Scholar
  43. Vida Dujmović, David Eppstein, and David R. Wood. 2017. Structure of graphs with locally restricted crossings. SIAM J. Discrete Math. 31, 2 (2017), 805–824. DOI:https://doi.org/10.1137/16M1062879Google ScholarGoogle ScholarCross RefCross Ref
  44. Vida Dujmović, Louis Esperet, Gwenaël Joret, Cyril Gavoille, Piotr Micek, and Pat Morin. 2020. Adjacency labelling for planar graphs (and beyond). (2020). arXiv: 2003.04280.Google ScholarGoogle Scholar
  45. Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. 2020. Planar graphs have bounded nonrepetitive chromatic number. Advances in Combinatorics 5 (2020). DOI:https://doi.org/10.19086/aic.12100Google ScholarGoogle Scholar
  46. Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. 2020. Clustered 3-colouring graphs of bounded degree. (2020). arXiv: 2002.11721.Google ScholarGoogle Scholar
  47. Vida Dujmović and Fabrizio Frati. 2018. Stack and queue layouts via layered separators. J. Graph Algorithms Appl. 22, 1 (2018), 89–99. DOI:https://doi.org/10.7155/jgaa.00454 MR: 3757347.Google ScholarGoogle ScholarCross RefCross Ref
  48. Vida Dujmović, Pat Morin, and David R. Wood. 2005. Layout of graphs with bounded tree-width. SIAM J. Comput. 34, 3 (2005), 553–579. DOI:https://doi.org/10.1137/S0097539702416141 MR: 2137079.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Vida Dujmović, Pat Morin, and David R. Wood. 2017. Layered separators in minor-closed graph classes with applications. J. Combin. Theory Ser. B 127 (2017), 111–147. DOI:https://doi.org/10.1016/j.jctb.2017.05.006 arXiv:1306.1595MR: 3704658.Google ScholarGoogle ScholarCross RefCross Ref
  50. Vida Dujmović, Pat Morin, and David R. Wood. 2019. Queue layouts of graphs with bounded degree and bounded genus. (2019). arXiv: 1901.05594.Google ScholarGoogle Scholar
  51. Vida Dujmović, Attila Pór, and David R. Wood. 2004. Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6, 2 (2004), 497–522. http://dmtcs.episciences.org/315 MR: 2180055.Google ScholarGoogle Scholar
  52. Vida Dujmović and David R. Wood. 2004. On linear layouts of graphs. Discrete Math. Theor. Comput. Sci. 6, 2 (2004), 339–358. http://dmtcs.episciences.org/317 MR: 2081479.Google ScholarGoogle Scholar
  53. Vida Dujmović and David R. Wood. 2004. Three-dimensional grid drawings with sub-quadratic volume. In Towards a Theory of Geometric Graphs, János Pach (Ed.). Contemporary Mathematics, vol. 342. Amer. Math. Soc., 55–66. MR: 2065252.Google ScholarGoogle Scholar
  54. Vida Dujmović and David R. Wood. 2005. Stacks, queues and tracks: Layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7 (2005), 155–202. http://dmtcs.episciences.org/346 MR: 2164064.Google ScholarGoogle Scholar
  55. Vida Dujmović and David R. Wood. 2006. Upward three-dimensional grid drawings of graphs. Order 23, 1 (2006), 1–20. DOI:https://doi.org/10.1007/s11083-006-9028-y MR: 2258457.Google ScholarGoogle ScholarCross RefCross Ref
  56. Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood. 2020. Notes on graph product structure theory. (2020). arXiv: 2001.08860.Google ScholarGoogle Scholar
  57. Zdeněk Dvořák and Robin Thomas. 2014. List-coloring apex-minor-free graphs. arXiv: 1401.1399.Google ScholarGoogle Scholar
  58. David Eppstein. 2000. Diameter and treewidth in minor-closed graph families. Algorithmica 27, 3–4 (2000), 275–291. DOI:https://doi.org/10.1007/s004530010020 MR: 1759751.Google ScholarGoogle ScholarCross RefCross Ref
  59. Jeff Erickson and Kim Whittlesey. 2005. Greedy optimal homotopy and homology generators. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, 1038–1046.Google ScholarGoogle Scholar
  60. Stefan Felsner, Giussepe Liotta, and Stephen K. Wismath. 2002. Straight-line drawings on restricted integer grids in two and three dimensions. In Proceedings of the 9th International Symposium on Graph Drawing (GD’01)(Computer Science), Petra Mutzel, Michael Jünger, and Sebastian Leipert (Eds.), vol. 2265. Springer, 328–342.Google ScholarGoogle Scholar
  61. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality and geometric graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. 1563–1575. DOI:https://doi.org/10.1137/1.9781611973099.124 MR: 3205314.Google ScholarGoogle ScholarCross RefCross Ref
  62. Jacob Fox and János Pach. 2010. A separator theorem for string graphs and its applications. Combin. Probab. Comput. 19, 3 (2010), 371–390. DOI:https://doi.org/10.1017/S0963548309990459Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Jacob Fox and János Pach. 2014. Applications of a new separator theorem for string graphs. Combin. Probab. Comput. 23, 1 (2014), 66–74. DOI:https://doi.org/10.1017/S0963548313000412Google ScholarGoogle ScholarCross RefCross Ref
  64. Daniel J. Harvey and David R. Wood. 2017. Parameters tied to treewidth. J. Graph Theory 84, 4 (2017), 364–385. DOI:https://doi.org/10.1002/jgt.22030 MR: 3623383.Google ScholarGoogle ScholarCross RefCross Ref
  65. Toru Hasunuma. 2007. Queue layouts of iterated line directed graphs. Discrete Appl. Math. 155, 9 (2007), 1141–1154. DOI:https://doi.org/10.1016/j.dam.2006.04.045 MR: 2321020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Lenwood S. Heath, F. Thomson Leighton, and Arnold L. Rosenberg. 1992. Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math. 5, 3 (1992), 398–412. DOI:https://doi.org/10.1137/0405031 MR: 1172748.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Lenwood S. Heath and Sriram V. Pemmaraju. 1997. Stack and queue layouts of posets. SIAM J. Discrete Math. 10, 4 (1997), 599–625. DOI:https://doi.org/10.1137/S0895480193252380Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Lenwood S. Heath and Arnold L. Rosenberg. 1992. Laying out graphs using queues. SIAM J. Comput. 21, 5 (1992), 927–958. DOI:https://doi.org/10.1137/0221055 MR: 1181408.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Lenwood S. Heath and Arnold L. Rosenberg. 2011. Graph Layout using Queues. (2011). https://www.researchgate.net/publication/220616637_Laying_Out_Graphs_Using_QueuesGoogle ScholarGoogle Scholar
  70. Percy J. Heawood. 1890. Map colour theorem. Quart. J. Pure Appl. Math. 24 (1890), 332–338. DOI:https://doi.org/10.1112/plms/s2-51.3.161Google ScholarGoogle Scholar
  71. Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and Sebastian Siebertz. 2017. On the generalised colouring numbers of graphs that exclude a fixed minor. European J. Combin. 66 (2017), 129–144. DOI:https://doi.org/10.1016/j.ejc.2017.06.019Google ScholarGoogle ScholarCross RefCross Ref
  72. Jan van den Heuvel and David R. Wood. 2017. Improper colourings inspired by Hadwiger’s Conjecture. (2017). arXiv: 1704.06536.Google ScholarGoogle Scholar
  73. Jan van den Heuvel and David R. Wood. 2018. Improper colourings inspired by Hadwiger’s conjecture. J. London Math. Soc. 98 (2018), 129–148. Issue 1. DOI:https://doi.org/10.1112/jlms.12127Google ScholarGoogle ScholarCross RefCross Ref
  74. Sampath Kannan, Moni Naor, and Steven Rudich. 1988. Implicit representation of graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988). 334–343. DOI:https://doi.org/10.1145/62212.62244Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Sampath Kannan, Moni Naor, and Steven Rudich. 1992. Implicit representation of graphs. SIAM J. Discrete Math. 5, 4 (1992), 596–603. DOI:https://doi.org/10.1137/0405049Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Hal A. Kierstead and Daqing Yang. 2003. Orderings on graphs and game coloring number. Order 20, 3 (2003), 255–264. DOI:https://doi.org/10.1023/B:ORDE.0000026489.93166.cbGoogle ScholarGoogle ScholarCross RefCross Ref
  77. Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. 2018. The queue-number of posets of bounded width or height. In Graph Drawing and Network Visualization (Lecture Notes in Computer Science), vol. 11282. Springer, 200–212.Google ScholarGoogle Scholar
  78. Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. 2017. An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25 (2017), 49–67. DOI:https://doi.org/10.1016/j.cosrev.2017.06.002 MR: 3697129.Google ScholarGoogle ScholarCross RefCross Ref
  79. Andreĭ Kotlov. 2001. Minors and strong products. European J. Combin. 22, 4 (2001), 511–512. DOI:https://doi.org/10.1006/eujc.2000.0428 MR: 1829745.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki. 2014. Lower bounds for treewidth of product graphs. Discrete Appl. Math. 162 (2014), 251–258. DOI:https://doi.org/10.1016/j.dam.2013.08.005 MR: 3128527.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Jan Kratochvíl. 1991. String graphs. II. Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 1 (1991), 67–78. DOI:https://doi.org/10.1016/0095-8956(91)90091-WGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  82. Jan Kratochvíl and Michal Vaner. 2012. A note on planar partial 3-trees. (2012). arXiv: 1210.8113.Google ScholarGoogle Scholar
  83. Chun-Hung Liu and David R. Wood. 2019. Clustered graph coloring and layered treewidth. arXiv: 1905.08969.Google ScholarGoogle Scholar
  84. Seth M. Malitz. 1994. Genus g graphs have pagenumber O( √g) . J. Algorithms 17, 1 (1994), 85–109. DOI:https://doi.org/10.1006/jagm.1994.1028 MR: 1279270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Bojan Mohar. 1999. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12, 1 (1999), 6–26. DOI:https://doi.org/10.1137/S089548019529248XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  86. Bojan Mohar and Carsten Thomassen. 2001. Graphs on Surfaces. Johns Hopkins University Press. MR: 1844449.Google ScholarGoogle Scholar
  87. Pat Morin. 2020. A fast algorithm for the product structure of planar graphs. (2020). arXiv: 2004.02530.Google ScholarGoogle Scholar
  88. Jaroslav Nešetřil and Patrice Ossona de Mendez. 2012. Sparsity. Algorithms and Combinatorics, vol. 28. Springer. DOI:https://doi.org/10.1007/978-3-642-27875-4 MR: 2920058.Google ScholarGoogle Scholar
  89. L. Taylor Ollmann. 1973. On the book thicknesses of various graphs. In Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing (Congr. Numer.), Frederick Hoffman, Roy B. Levow, and Robert S. D. Thomas (Eds.), vol. VIII. Utilitas Math., 459.Google ScholarGoogle Scholar
  90. Patrice Ossona de Mendez, Sang-il Oum, and David R. Wood. 2019. Defective colouring of graphs excluding a subgraph or minor. Combinatorica 39, 2 (2019), 377–410. DOI:https://doi.org/10.1007/s00493-018-3733-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. János Pach, Torsten Thiele, and Géza Tóth. 1999. Three-dimensional grid drawings of graphs. In Advances in Discrete and Computational Geometry, Bernard Chazelle, Jacob E. Goodman, and Richard Pollack (Eds.). Contemporary Mathematics, vol. 223. Amer. Math. Soc., 251–255. MR: 1661387.Google ScholarGoogle Scholar
  92. János Pach and Géza Tóth. 2002. Recognizing string graphs is decidable. Discrete Comput. Geom. 28, 4 (2002), 593–606. DOI:https://doi.org/10.1007/s00454-002-2891-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Sriram V. Pemmaraju. 1992. Exploring the Powers of Stacks and Queues via Graph Layouts. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.Google ScholarGoogle Scholar
  94. Michał Pilipczuk and Sebastian Siebertz. 2019. Polynomial bounds for centered colorings on proper minor-closed graph classes. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Timothy M. Chan (Ed.). 1501–1520. DOI:https://doi.org/10.1137/1.9781611975482.91 arXiv: 1807.03683.Google ScholarGoogle ScholarCross RefCross Ref
  95. Sergey Pupyrev. 2019. Improved bounds for track numbers of planar graphs. (2019). arXiv: 1910.14153.Google ScholarGoogle Scholar
  96. Bruce A. Reed. 1997. Tree width and tangles: A new connectivity measure and some applications. In Surveys in Combinatorics. London Math. Soc. Lecture Note Ser., vol. 241. Cambridge University Press, 87–162. DOI:https://doi.org/10.1017/CBO9780511662119.006 MR: 1477746.Google ScholarGoogle Scholar
  97. Bruce A. Reed and Paul Seymour. 1998. Fractional colouring and Hadwiger’s conjecture. J. Combin. Theory Ser. B 74, 2 (1998), 147–152. DOI:https://doi.org/10.1006/jctb.1998.1835 MR: 1654153.Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. S. Rengarajan and C. E. Veni Madhavan. 1995. Stack and queue number of 2-trees. In Proceedings of the 1st Annual International Conference on Computing and Combinatorics (COCOON’95) (Lecture Notes in Computer Science), Ding-Zhu Du and Ming Li (Eds.), vol. 959. Springer, 203–212. DOI:https://doi.org/10.1007/BFb0030834Google ScholarGoogle Scholar
  99. Neil Robertson and Paul Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 3 (1986), 309–322. DOI:https://doi.org/10.1016/0196-6774(86)90023-4 MR: 0855559.Google ScholarGoogle ScholarCross RefCross Ref
  100. Neil Robertson and Paul Seymour. 2003. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B 89, 1 (2003), 43–76. DOI:https://doi.org/10.1016/S0095-8956(03)00042-X MR: 1999736.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. 2003. Recognizing string graphs in NP. J. Comput. System Sci. 67, 2 (2003), 365–380. DOI:https://doi.org/10.1016/S0022-0000(03)00045-XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  102. Marcus Schaefer and Daniel Štefankovič. 2004. Decidability of string graphs. J. Comput. System Sci. 68, 2 (2004), 319–334. DOI:https://doi.org/10.1016/j.jcss.2003.07.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Alex Scott, Paul Seymour, and David R. Wood. 2019. Bad news for chordal partitions. J. Graph Theory 90 (2019), 5–12. DOI:https://doi.org/10.1002/jgt.22363Google ScholarGoogle ScholarCross RefCross Ref
  104. Detlef Seese. 1985. Tree-partite graphs and the complexity of algorithms. In Proceedings of the International Conference on Fundamentals of Computation Theory (Lecture Notes in Computer Science), Lothar Budach (Ed.), vol. 199. Springer, 412–421. DOI:https://doi.org/10.1007/BFb0028825 MR: 0821258.Google ScholarGoogle ScholarCross RefCross Ref
  105. Farhad Shahrokhi. 2013. New representation results for planar graphs. In Proceedings of the 29th European Workshop on Computational Geometry (EuroCG 2013). 177–180. arXiv: 1502.06175.Google ScholarGoogle Scholar
  106. Jiun-Jie Wang. 2017. Layouts for plane graphs on constant number of tracks. (2017). arXiv: 1708.02114.Google ScholarGoogle Scholar
  107. Veit Wiechert. 2017. On the queue-number of graphs with bounded tree-width. Electron. J. Combin. 24, 1 (2017), 1.65. https://doi.org/10.37236/6429 MR: 3651947.Google ScholarGoogle ScholarCross RefCross Ref
  108. David R. Wood. 2005. Queue layouts of graph products and powers. Discrete Math. Theor. Comput. Sci. 7, 1 (2005), 255–268. http://dmtcs.episciences.org/352 MR: 2183176.Google ScholarGoogle Scholar
  109. David R. Wood. 2008. Bounded-degree graphs have arbitrarily large queue-number. Discrete Math. Theor. Comput. Sci. 10, 1 (2008), 27–34. http://dmtcs.episciences.org/434 MR: 2369152.Google ScholarGoogle Scholar
  110. David R. Wood. 2008. The structure of Cartesian products. (2008). https://www.birs.ca/workshops/2008/08w5079/report08w5079.pdfGoogle ScholarGoogle Scholar
  111. David R. Wood. 2009. On tree-partition-width. European J. Combin. 30, 5 (2009), 1245–1253. DOI:https://doi.org/10.1016/j.ejc.2008.11.010 MR: 2514645.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. David R. Wood. 2011. Clique minors in Cartesian products of graphs. New York J. Math. 17 (2011), 627–682. http://nyjm.albany.edu/j/2011/17-28.htmlGoogle ScholarGoogle Scholar
  113. David R. Wood. 2013. Treewidth of Cartesian products of highly connected graphs. J. Graph Theory 73, 3 (2013), 318–321. DOI:https://doi.org/10.1002/jgt.21677Google ScholarGoogle ScholarCross RefCross Ref
  114. Zefang Wu, Xu Yang, and Qinglin Yu. 2010. A note on graph minors and strong products. Appl. Math. Lett. 23, 10 (2010), 1179–1182. DOI:https://doi.org/10.1016/j.aml.2010.05.007 MR: 2665591.Google ScholarGoogle ScholarCross RefCross Ref
  115. Mihalis Yannakakis. 1989. Embedding planar graphs in four pages. J. Comput. System Sci. 38, 1 (1989), 36–67. DOI:https://doi.org/10.1016/0022-0000(89)90032-9 MR: 0990049.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Vida Dujmović, Pat Morin, and David R. Wood. 2019. Graph product structure for non-minor-closed classes. arXiv: 1907.05168.Google ScholarGoogle Scholar

Index Terms

  1. Planar Graphs Have Bounded Queue-Number

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 67, Issue 4
      August 2020
      265 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/3403612
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 August 2020
      • Online AM: 7 May 2020
      • Accepted: 1 February 2020
      • Received: 1 May 2019
      Published in jacm Volume 67, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format