skip to main content
research-article

Design, Analysis, and Implementation of Efficient Framework for Image Annotation

Authors Info & Claims
Published:05 July 2020Publication History
Skip Abstract Section

Abstract

In this article, a general framework of image annotation is proposed by involving salient object detection (SOD), feature extraction, feature selection, and multi-label classification. For SOD, Augmented-Gradient Vector Flow (A-GVF) is proposed, which fuses benefits of GVF and Minimum Directional Contrast. The article also proposes to control the background information to be included for annotation. This article brings about a comprehensive study of all major feature selection methods for a study on four publicly available datasets. The study concludes with the proposition of using Fisher’s method for reducing the dimension of features. Moreover, this article also proposes a set of features that are found to be strong discriminants by most of the methods. This reduced set for image annotation gives 3--4% better accuracy across all the four datasets. This article also proposes an improved multi-label classification algorithm C-MLFE.

References

  1. Radhakrishna Achanta, Francisco Estrada, Patricia Wils, and Sabine Süsstrunk. 2008. Salient region detection and segmentation. In Proceedings of the 6th International Conference on Computer Vision Systems (ICVS’08). Springer-Verlag, Berlin, 66--75. Retrieved from http://dl.acm.org/citation.cfm?id=1788524.178Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Agarwal and D. Roth. 2002. Learning a sparse representation for object detection. In Proceedings of the European Conference on Computer Vision, Vol. 4. Springer-Verlag, Copenhagen, Denmark, 113--130.Google ScholarGoogle Scholar
  3. K. Akhilesh and R. R. Sedamkar. 2016. Automatic image annotation using an ant colony optimization algorithm (ACO). In Proceedings of the IEEE 7th Power India International Conference (PIICON’16). 1--4. DOI:https://doi.org/10.1109/POWERI.2016.8077423Google ScholarGoogle Scholar
  4. Mykhaylo Andriluka, Jasper R. R. Uijlings, and Vittorio Ferrari. 2018. Fluid annotation: A human-machine collaboration interface for full image annotation. Retrieved from http://arxiv.org/abs/1806.07527.Google ScholarGoogle Scholar
  5. Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. 2012. Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn. 45, 6 (June 2012), 2137--2144. DOI:https://doi.org/10.1016/j.patcog.2011.04.018Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Paul S. Bradley and O. L. Mangasarian. 1998. Feature selection via concave minimization and support vector machines. In Proceedings of the 15th International Conference on Machine Learning (ICML’98). Morgan Kaufmann, San Francisco, CA, 82--90. Retrieved from http://dl.acm.org/citation.cfm?id=645527.657467.Google ScholarGoogle Scholar
  7. Deng Cai, Chiyuan Zhang, and Xiaofei He. 2010. Unsupervised feature selection for multi-cluster data. In Proceedings of the ACM Special Interest Group (SIG) on Knowledge Discovery and Data Mining (KDD’10).Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ye Chen, D. Marc Kilgour, and Keith W. Hipel. 2011. An extreme-distance approach to multiple criteria ranking. Math. Comput. Model. 53, 5 (2011), 646--658. DOI:https://doi.org/10.1016/j.mcm.2010.10.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S. Hu. 2015. Global contrast-based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 3 (Mar. 2015), 569--582. DOI:https://doi.org/10.1109/TPAMI.2014.2345401Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, and Shi-Min Hu. 2015. Global contrast-based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 3 (2015), 569--582. DOI:https://doi.org/10.1109/TPAMI.2014.2345401Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Cheung and H. Zeng. 2010. Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Pattern Anal. Mach. Intell. 33 (Nov. 2010), 1532--1547. DOI:https://doi.org/10.1109/TPAMI.2010.215Google ScholarGoogle Scholar
  12. Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao Zheng. 2009. NUS-WIDE: A real-world web image database from national university of Singapore. In Proceeding of the ACM Conference on Image and Video Retrieval (CIVR’09).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Deng, Y. Sun, Y. Zhu, Y. Xu, Q. Yang, S. Zhang, Z. Wang, J. Sun, W. Zhao, X. Zhou, and K. Yuan. 2019. A new framework to reduce doctor’s workload for medical image annotation. IEEE Access 7 (2019), 107097--107104. DOI:https://doi.org/10.1109/ACCESS.2019.2917932Google ScholarGoogle ScholarCross RefCross Ref
  14. Liang Du and Yi-Dong Shen. 2015. Unsupervised feature selection with adaptive structure learning. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). ACM, New York, NY, 209--218. DOI:https://doi.org/10.1145/2783258.2783345Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lijuan Duan, Chunpeng Wu, Jun Miao, Laiyun Qing, and Yu Fu. 2011. Visual saliency detection by spatially weighted dissimilarity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11). IEEE Computer Society, Washington, DC, 473--480. DOI:https://doi.org/10.1109/CVPR.2011.5995676Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Erkut Erdem and Aykut Erdem. 2013. Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vision 13, 4 (2013), 11. DOI:https://doi.org/10.1167/13.4.11 arXiv:/data/journals/jov/932809/i1534-7362-13-4-11.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  17. Jianping Fan, Yi Shen, Chunlei Yang, and Ning Zhou. 2011. Structured max-margin learning for inter-related classifier training and multilabel image annotation. IEEE Trans. Image Process. 20, 3 (2011), 837--854.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ruochen Fan, Qibin Hou, Ming-Ming Cheng, Tai-Jiang Mu, and Shi-Min Hu. 2017. SNet: Single stage salient-instance segmentation. Retrieved from http://arxiv.org/abs/1711.07618.Google ScholarGoogle Scholar
  19. Shenghua Gao, Liang-Tien Chia, Ivor Wai-Hung Tsang, and Zhixiang Ren. 2014. Concurrent single-label image classification and annotation via efficient multi-layer group sparse coding. IEEE Trans. Multimedia 16, 3 (2014), 762--771.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Goferman, L. Zelnik-Manor, and A. Tal. 2012. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 10 (Oct. 2012), 1915--1926. DOI:https://doi.org/10.1109/TPAMI.2011.272Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Yunchao Gong, Yangqing Jia, Alexander Toshev, Thomas Leung, and Sergey Ioffe. 2014. Deep convolutional ranking for multilabel image annotation. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  22. Quanquan Gu, Zhenhui Li, and Jiawei Han. 2011. Generalized fisher score for feature selection. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI’11). AUAI Press, Arlington, VA, 266--273. Retrieved from http://dl.acm.org/citation.cfm?id=3020548.3020580.Google ScholarGoogle Scholar
  23. J. Guo, Y. Quo, X. Kong, and R. He. 2017. Unsupervised feature selection with ordinal locality. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’17). 1213--1218. DOI:https://doi.org/10.1109/ICME.2017.8019357Google ScholarGoogle Scholar
  24. Jun Guo and Wenwu Zhu. 2018. Dependence Guided Unsupervised Feature Selection. Retrieved from https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17171.Google ScholarGoogle Scholar
  25. Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 1 (Jan. 2002), 389--422. DOI:https://doi.org/10.1023/A:1012487302797Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mark A. Hall. 1998. Correlation-based Feature Selection for Machine Learning. Technical Report.Google ScholarGoogle Scholar
  27. Xiaofei He, Deng Cai, and Partha Niyogi. 2006. Laplacian score for feature selection. In Advances in Neural Information Processing Systems, vol. 18. Y. Weiss, B. Schölkopf, and J. C. Platt (Eds.). MIT Press, 507--514. Retrieved from http://papers.nips.cc/paper/2909-laplacian-score-for-feature-selection.pdf.Google ScholarGoogle Scholar
  28. Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. S. Torr. 2019. Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41, 4 (Apr. 2019), 815--828. DOI:https://doi.org/10.1109/TPAMI.2018.2815688Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Hou, J. Harel, and C. Koch. 2012. Image signature: Highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1 (Jan. 2012), 194--201. DOI:https://doi.org/10.1109/TPAMI.2011.146Google ScholarGoogle Scholar
  30. Xiaodi Hou and Liqing Zhang. 2007. Saliency detection: A spectral residual approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07). IEEE, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  31. L. Hu and L. Chen. 2018. Semi-automatic annotation of distorted image based on neighborhood rough set. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA’18). 2782--2786. DOI:https://doi.org/10.1109/ICIEA.2018.8398182Google ScholarGoogle Scholar
  32. X. Huang and Y. Zhang. 2017. 300-FPS salient object detection via minimum directional contrast. IEEE Trans. Image Process. 26, 9 (Sept. 2017), 4243--4254. DOI:https://doi.org/10.1109/TIP.2017.2710636Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. Jiang, L. Zhang, H. Lu, C. Yang, and M. Yang. 2013. Saliency detection via absorbing Markov chain. In Proceedings of the IEEE International Conference on Computer Vision. 1665--1672. DOI:https://doi.org/10.1109/ICCV.2013.209Google ScholarGoogle Scholar
  34. Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour models. Int. J. Comput. Vision 1, 4 (Jan. 1988), 321--331. DOI:https://doi.org/10.1007/BF00133570Google ScholarGoogle ScholarCross RefCross Ref
  35. Igor Kononenko, Edvard Šimec, and Marko Robnik-Šikonja. 1997. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 1 (Jan. 1997), 39--55. DOI:https://doi.org/10.1023/A:1008280620621Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. L. Li and Li Fei-Fei. 2007. What, where and who? Classifying events by scene and object recognition. In Proceedings of the IEEE 11th International Conference on Computer Vision. 1--8. DOI:https://doi.org/10.1109/ICCV.2007.4408872Google ScholarGoogle ScholarCross RefCross Ref
  37. X. Li, H. Lu, L. Zhang, X. Ruan, and M. Yang. 2013. Saliency detection via dense and sparse reconstruction. In Proceedings of the IEEE International Conference on Computer Vision. 2976--2983. DOI:https://doi.org/10.1109/ICCV.2013.370Google ScholarGoogle Scholar
  38. Yin Li, Xiaodi Hou, Christof Koch, James M. Rehg, and Alan L. Yuille. 2014. The secrets of salient object segmentation. Retrieved from http://arxiv.org/abs/1406.2807.Google ScholarGoogle Scholar
  39. Zhenqiu Liu and Gang Li. 2014. Efficient regularized regression for variable selection with L0 penalty. Retrieved from http://arxiv.org/abs/1407.7508.Google ScholarGoogle Scholar
  40. H. Lu, X. Li, L. Zhang, X. Ruan, and M. Yang. 2016. Dense and sparse reconstruction error-based saliency descriptor. IEEE Trans. Image Process. 25, 4 (Apr. 2016), 1592--1603. DOI:https://doi.org/10.1109/TIP.2016.2524198Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ran Margolin, Ayellet Tal, and Lihi Zelnik-Manor. 2013. What makes a patch distinct? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1139--1146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. N. Murray, M. Vanrell, X. Otazu, and C. A. Parraga. 2011. Saliency estimation using a non-parametric low-level vision model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’11). IEEE Computer Society, Washington, DC, 433--440. DOI:https://doi.org/10.1109/CVPR.2011.5995506Google ScholarGoogle Scholar
  43. Yulei Niu, Zhiwu Lu, Ji-Rong Wen, Tao Xiang, and Shih-Fu Chang. 2017. Multi-modal multi-scale deep learning for large-scale image annotation. Retrieved from http://arxiv.org/abs/1709.01220.Google ScholarGoogle Scholar
  44. H. Peng, B. Li, H. Ling, W. Hu, W. Xiong, and S. J. Maybank. 2017. Salient object detection via structured matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 4 (Apr. 2017), 818--832. DOI:https://doi.org/10.1109/TPAMI.2016.2562626Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Matti Pietikainen, Matti Pietikaeinen, Timo Ojala, Matti Pietikäinen, and David Harwood. 1996. A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29 (1996), 51--59.Google ScholarGoogle ScholarCross RefCross Ref
  46. F. Radenovic, G. Tolias, and O. Chum. 2019. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 7 (July 2019), 1655--1668. DOI:https://doi.org/10.1109/TPAMI.2018.2846566Google ScholarGoogle ScholarCross RefCross Ref
  47. Esa Rahtu, Juho Kannala, Mikko Salo, and Janne Heikkilä. 2010. Segmenting salient objects from images and videos. In Proceedings of the European Conference on Computer Vision (ECCV’10), Kostas Daniilidis, Petros Maragos, and Nikos Paragios (Eds.). Springer, Berlin, 366--379.Google ScholarGoogle ScholarCross RefCross Ref
  48. S. Renuse and N. Bogiri. 2017. Multi label learning and multi feature extraction for automatic image annotation. In Proceedings of the International Conference on Computing, Communication, Control and Automation (ICCUBEA’17). 1--6. DOI:https://doi.org/10.1109/ICCUBEA.2017.8463659Google ScholarGoogle Scholar
  49. Hamed Rezazadegan Tavakoli, Esa Rahtu, and Janne Heikkilä. 2011. Fast and efficient saliency detection using sparse sampling and kernel density estimation. In Image Analysis, Anders Heyden and Fredrik Kahl (Eds.). Springer, Berlin, 666--675.Google ScholarGoogle Scholar
  50. Giorgio Roffo and Simone Melzi. 2017. Ranking to learn: Feature ranking and selection via eigenvector centrality. Retrieved from http://arxiv.org/abs/1704.05409.Google ScholarGoogle Scholar
  51. Giorgio Roffo, Simone Melzi, Umberto Castellani, and Alessandro Vinciarelli. 2017. Infinite latent feature selection: A probabilistic latent graph-based ranking approach. Retrieved from http://arxiv.org/abs/1707.07538Google ScholarGoogle Scholar
  52. G. Roffo, S. Melzi, and M. Cristani. 2015. Infinite feature selection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’15). 4202--4210. DOI:https://doi.org/10.1109/ICCV.2015.478Google ScholarGoogle Scholar
  53. Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman. 2008. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vision 77, 1--3 (May 2008), 157--173. DOI:https://doi.org/10.1007/s11263-007-0090-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Hae Jong Seo and Peyman Milanfar. 2009. Static and space-time visual saliency detection by self-resemblance. J. Vision 9, 12 (2009), 15. DOI:https://doi.org/10.1167/9.12.15 arXiv:/data/journals/jov/932859/jov-9-12-15.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  55. Robert Tibshirani. 1996. Regression Shrinkage and selection via the Lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58, 1 (1996), 267--288. Retrieved from http://www.jstor.org/stable/2346178.Google ScholarGoogle ScholarCross RefCross Ref
  56. K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. 2010. Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32, 9 (2010), 1582--1596. Retrieved from https://ivi.fnwi.uva.nl/isis/publications/2010/vandeSandeTPAMI2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. F. Wang, J. Liu, S. Zhang, G. Zhang, Y. Li, and F. Yuan. 2019. Inductive zero-shot image annotation via embedding graph. IEEE Access 7 (2019), 107816--107830. DOI:https://doi.org/10.1109/ACCESS.2019.2925383Google ScholarGoogle ScholarCross RefCross Ref
  58. Chenyang Xu and J. L. Prince. 1997. Gradient vector flow: A new external force for snakes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 66--71. DOI:https://doi.org/10.1109/CVPR.1997.609299Google ScholarGoogle Scholar
  59. Chuan Yang, Lihe Zhang, and Huchuan Lu. 2013. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20, 7 (2013), 637--640. Retrieved from http://dblp.uni-trier.de/db/journals/spl/spl20.htmlYangZL13.Google ScholarGoogle ScholarCross RefCross Ref
  60. Chuan Yang, Lihe Zhang, Ruan Xiang Lu, Huchuan, and Ming-Hsuan Yang. 2013. Saliency detection via graph-based manifold ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13). IEEE, 3166--3173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Yi Yang, Heng Tao Shen, Zhigang Ma, Zi Huang, and Xiaofang Zhou. 2011. L2,1-norm regularized discriminative feature selection for unsupervised learning. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11). AAAI Press, 1589--1594. DOI:https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-267Google ScholarGoogle Scholar
  62. Baochang Zhang, Yongsheng Gao, Sanqiang Zhao, and Jianzhuang Liu. 2010. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19, 2 (Feb. 2010), 533--544. DOI:https://doi.org/10.1109/TIP.2009.2035882Google ScholarGoogle Scholar
  63. Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao Shan, and Garrison W. Cottrell. 2008. Sun: A Bayesian framework for saliency using natural statistics. J. Vision 8, 32 (2008). DOI:https://doi.org/10.1167/8.7.32Google ScholarGoogle ScholarCross RefCross Ref
  64. M. Zhang and Z. Zhou. 2014. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 8 (Aug. 2014), 1819--1837. DOI:https://doi.org/10.1109/TKDE.2013.39Google ScholarGoogle ScholarCross RefCross Ref
  65. Qian-Wen Zhang, Yun Zhong, and Min-Ling Zhang. 2018. Feature-induced labeling information enrichment for multi-label learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18), the 30th Innovative Applications of Artificial Intelligence (IAAI’18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI’18). 4446--4453. Retrieved from https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16454.Google ScholarGoogle Scholar
  66. X. Zhang and S. Lou. 2017. Image emotional semantic annotation based on fusion features. In Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI’17). 1--5. DOI:https://doi.org/10.1109/CISP-BMEI.2017.8301971Google ScholarGoogle Scholar
  67. Shuai Zheng, Xiao Cai, Chris H. Q. Ding, Feiping Nie, and Heng Huang. 2016. A closed form solution to multi-view low-rank regression. Retrieved from http://arxiv.org/abs/1610.04668.Google ScholarGoogle Scholar
  68. W. Zhu, S. Liang, Y. Wei, and J. Sun. 2014. Saliency optimization from robust background detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2814--2821. DOI:https://doi.org/10.1109/CVPR.2014.360Google ScholarGoogle Scholar

Index Terms

  1. Design, Analysis, and Implementation of Efficient Framework for Image Annotation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Multimedia Computing, Communications, and Applications
          ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 16, Issue 3
          August 2020
          364 pages
          ISSN:1551-6857
          EISSN:1551-6865
          DOI:10.1145/3409646
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 July 2020
          • Online AM: 7 May 2020
          • Accepted: 1 February 2020
          • Revised: 1 January 2020
          • Received: 1 May 2019
          Published in tomm Volume 16, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format